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PREFACE

This book aims to present a course suitable for students in

the first year of our colleges, universities, and technical schools.

It presupposes on the part of the student only the usual mini-

mum entrance requirements in elementary algebra and plane

geometry^

The .book has been written with the hope of contributing

something toward the solution of the problem of increasing

the value and significance of our freshman courses. The

recent widespread discussion of this problem has led to the

general acceptance on the part of many teachers of certain

principles governing the selection and arrangement of mate-

rial and the point of view from which it is to be presented.

Among such principles, which have guided us in the prepara-

tion of this text, are the following.

1. More emphasis should be placed on insight and under-

standing of fundamental conceptions and modes of thought,

less emphasis on algebraic technique and facility of manipula-

tion. The development of proficiency in algebraic manipulation

as such we believe has little general educational value. It is

valuable only as a means to an end, not as an end in itself. A
certain amount of skill in algebraic reduction is, of course,

essential to any effective understanding of mathematical pro-

cesses, and this minimum of skill the student must secure.

But it seems undesirable in the first year to emphasize the

formal aspects of mathematics beyond what is necessary for

the understanding of mathematical thought. This is espe-

cially true for that great majority of students who do not

continue their study of mathematics beyond their freshman

:i79f40ft



vi PREFACE

year and who study mathematics for general cultural and dis-

ciplinary purposes. It seems to us altogether probable, how-

ever, that even in the case of students who expect to use

mathematics in their later life work (as scientists, engineers,

etc.) greater power will be gained in the same length of time,

if their first year in college is devoted primarily to the gain-

ing of insight and appreciation, rather than technical facility.

Experience has shown only too conclusively that in many cases

the emphasis usually placed on formal manipulation effectually

prevents the development of any adequate sort of independent

power.

2. The reference above to the general cultural and disciplin-

ary aims of mathematical study at once raises the question as

to the selection of the material that is to form the content of

the course. The cultural motive for the study of mathematics

is found in the fact that mathematics has played and contin-

ues to play in increasing measure an important role in human

progress. An educated man or woman should have some con-

ception of what mathematics has done and is doing for man-

kind and some appreciation of its power and beauty. To this

end our introductory courses should cover as broad a range of

mathematical concepts and processes as possible. In particu-

lar, they must not confine themselves to ancient and medieval

mathematics, but must give due consideration to more modern

mathematical disciplines. The fundamental conceptions of

the calculus must be introduced as early as is feasible in view

of the essential role they have played in the progress of

civilization.

If this broad cultural aim is accepted as one of the funda-

mental principles in the selection of material, we shall readily

agree that much that is now generally considered necessary

can and should be eliminated from our general courses in
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mathematics. Almost all of the conventional course in solid

geometry would fall in this category, as well as much of what

is now taught as college algebra, all of the more specialized

portions of analytic geometry, etc. The time thus gained could

then be used for topics that are culturally more significant.

3. The disciplinary motive for the study of mathematics

is the one most often emphasized and ,need not be elaborated

here. In spite of much recent criticism of the doctrine of

formal discipline in education and in spite of the fact that

some of this criticism as applied to mathematics seems to us

justified, we firmly believe that faith in the disciplinary value

of mathematics is fundamentally sound. Teachers of mathe-

matics need, however, to formulate with precision their aims

and purposes in this direction and make their practice conform

to this formulation. The disciplinary value of mathematics

is to be sought primarily in the domain of thinking, reasoning,

reflection, analysis ; not in the field of memory, nor of skill

in a highly specialized form of activity. We come back here

to the conflict between insight and technique discussed earlier

in this preface. Suflice it to remark here that the purpose

of technical facility is to economize thought, rather than to

stimulate it. If our primary purpose is to stimulate thought,

we must place the major emphasis on the mathematical formu-

lation of a problem and on the interpretation of the final re-

sult, rather than on the formal manipulation which forms the

necessary intermediate step ; on the derivation of a formula

rather than merely on its formal application ; on the general

significance of a concept rather than on its specialized function

in a purely mathematical relation.

If we desire to enhance the general disciplinary value of

mathematics, we will seek out and emphasize especially those

conceptions and those modes of thought of our subject which
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are most general in their application to the problems of our

everyday life. It is fortunate for our purpose— and it is

probably more than a mere coincidence— that the conceptions

and processes of mathematics which most readily suggest

themselves in this connection are the same that are suggested

by the cultural motive discussed earlier. The concept of funo-

tionality and the mathematical processes developed for the

study of functions are precisely the things in mathematics

that have most effectively contributed to human progress in

more modern times ; and the thinking stimulated by this

concept and these processes is fundamentally similar to the

thought which we are continually applying to our daily prob-

lems. "Functional thinking," to use Klein's famous phrase,

is universal. It comes into play when we make the simplest

purchase, as well as when we attempt to analyze the most

complicated interplay of causes and effects.

In the preparation of this text, we have sought to give an

introduction to the elementary mathematical functions, the

concepts connected therewith, the processes necessary to their

study, and their applications. By making the concept of a

function fundamental throughout we believe we have gained

a measure of unity impossible when the year is split up among

several different subjects. The arrangement of this material

is exhibited in the table of contents and the text proper, and

need not be discussed here. We would merely call attention

briefly to some features which seem to require emphasis or

explanation.

The change in the value of a function due to a change in

the value of a variable is emphasized from the very beginning.

The change ratio A y/A x is introduced in Chapter III for the

linear function, and the derivative is introduced as the slope

of the graph of a quadratic function in Chapter IV, although
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the word "derivative" is not introduced until Chapter XIX.

Derivatives are used in Chapters IV, V, X, XII, XIII, and XIX.

We have discussed rather more fully than is customary

those topics which involve new and important concepts, and

have been correspondingly brief where we felt the student

ought to be able to supply the argument himself. We have

tried throughout to place the emphasis on an understanding

of the general bearing of the principles, and have consistently

tried to minimize difficulties of mere algebraic technique. It

seems quite likely that customary classroom procedure will,

therefore, need to be modified in the direction of lessening the

time given to formal recitations and increasing the opportuni-

ties for informal discussion. A number of questions have

been inserted among the exercises which it is hoped will

stimulate such discussion ; this is the purpose also of a num-

ber of the " Why's " scattered throughout the text.

The lists of "Miscellaneous Exercises" found at the end

of chapters beginning with Chapter XI contain some exercises

too difficult for assignment in an average class. These may

be used to advantage, we hope, in so-called " honor sections
"

consisting of men who have shown exceptional ability in

mathematics.

A word regarding our conception as to how the text may

be applied to meet the varying mathematical preparation of

students will not be out of place. At Dartmouth College we

propose to distinguish in this connection only two kinds of

freshmen : those who enter without trigonometry, and those

who have passed a course in trigonometry in their secondary

school. The former will cover the first fifteen chapters of

this text in a course meeting three hours per week throughout

the year (about ninety assignments). These men will have

all the necessary preliminarj^ training for the usual courses
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in the calculus. Those students who enter with trigonometry

will cover the first nineteen chapters in a course meeting three

hours per week throughout the year, covering the material of

Chapters VI, VII, VIII, and IX (which for them is largely

review) in about three weeks.

In a course meeting five times per week throughout the

year, there should be ample time also for a thorough study

of the important topics of Chapter XX (Determinants) and

Chapters XXI-XXII (Functions of two independent variables

;

analytic geometry of space).

So much has been said in recent years in favor of a unified

course in mathematics for freshmen that it seems desirable

actually to try it out in practice. For this purpose a text-

book is necessary. We do not believe that this text will

solve the problem ; the most we can hope for is that we have

secured a first approximation. It is for this reason that we

urgently request users of this text to communicate to us any

criticisms or suggestions that occur to them looking to the

improvement of possible later editions. In particular, we

should like advice and counsel as to the possible desirability

of increasing the amount of calculus included in the first year.

This could be done by devoting less space to the purely geo-

metric aspects of analytic geometry. On theoretical grounds

we believe this to be desirable. We felt, however, that we

ought to be conservative in case of an innovation of this sort,

with a view of seeing how the introduction to this limited

extent of the notion of the derivative in the first year fares.

If the results are satisfactory, we could then take the next step

with confidence.

J. W. YOUNG.
F. M. MORGAN.

Hanover, N. H.,

AprU, 1917.
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ELEMENTARY
MATHEMATICAL ANALYSIS

PART I. INTRODUCTORY CONCEPTIONS

CHAPTER I

FUNCTIONS AND THEIR REPRESENTATION

1. The General Idea of a Function. Our daily activities

continually furnish us with examples of things that are related

to one anotherj of quantities which depend on certain other

quantities, which change when certain other quantities change.

Thus, a man's health is related to the food he eats, the exer-

cise he takes, and to many other things. The price of any

manufactured article depends on the cost of production, while

the latter cost in turn depends on the cost of the raw ma-

terial, the cost of labor, etc. The weather depends on a

variety of conditions. These are complicated examples of

dependence. There are very simple examples. Thus the

price paid for a certain quantity of sugar depends on the num-

ber of pounds bought and the price per pound ; the area of a

square depends on the length of one of its sides ; and so forth.

In all such cases, where some quantity depends on some

other quantity or quantities, we say that the former is a func-

tion of the latter. Thus the price of an article is a function of

the cost of production, the area of a square is a function of the

length of one of its sides, etc.

B 1



2 MATHKMATICAL ANALYSIS [I, § 2

2. General Laws. Many problems of science consist in

expressing as accurately as possible one quantity in terms of

another quantity on which the first depends. The statements,

" The area of a square is equal to the square of the length of

one side," and " The speed of a body falling from rest is pro-

portional to the time it has fallen " are simple examples.

At the basis of this idea of dependence or functionality is

the notion of a general law which the quantities in question

obey. Most of the problems of civilized life are concerned,

directly or indirectly, with the investigation of such laws.

Thus medical science seeks to discover the laws governing

health, economies' investigates the laws governing the produc-

tion and distribution of wealth, the business man studies the

conditions which influence his business and his profits. In

every case the investigation of the law in question involves

finding out how something is related to, depends on, changes

with, something else ; i.e. the study of a function of some kind.

The ability to think clearly about such relationships is of

the highest importance to every one. This course in mathe-

matics is primarily concerned with the study of certain of the

simpler kinds of functions and their applications.

3. Numbers and Quantities. We shall confine ourselves

in general to the study of relations between things which can

be ^measured. We can then always speak of the amount of one

of them. Such an amount is expressed, in terms of a suitable

unit of measure^ by means of a number. Anything that can be

represented by means of a number we shall call a quantity.

A function expressing the relation of one such quantity to

another gives rise to a relation between numbers. A very power-

ful aid in studying functions is their geometric representation,

which we shall discuss presently. We must consider first,

however, the geometric representation of a single quantity.
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4. The Arithmetic Scale. The distinction between two of

the simplest kinds of quantities can be illustrated by reference

to their geometric or graphic representation. Every one is

familiar with the so-called arithmetic scale (Fig. 1), of which the

I

i
j I

\

1

1

^

1

.

,

.

^

r-
J 3 3 4 5 6

Fig. 1

yard stick and tape measure are examples. The divisions of

the scale in these cases represent lengths. Another example

is the beam on a certain kind of balance ; here the divisions of

the scale represent weights.

A characteristic feature of an arithmetic scale is that it

begins at some point and extends from in one direction.

The quantities represented by such a scale are expressed by

means of the numbers of arithmetic. These in turn represent

simply the magnitude, or the size, or the amount, of something

(as 12 yd. of cloth, 96 lb. of sugar, etc.).

5. The Algebraic Scale. Hardly less familiar nowadays is

the so-called algebraic scale (Fig. 2). The most familiar ex-

n—'—I—I—I—'

—

r^—I J , I

—'—

r

-3 -2 •^l/ *1 +2i +3
Fia. 2

ample is probably the scale on an ordinary thermometer.

Every one knows the meaning of -f-
10° or — 5°.

Such an algebraic scale extends in two opposite directions

from some arbitrary point (marked 0) of the scale. The quan-

tities represented by the points of such a scale are expressed

by means of the so-called real numbers of algebra, such as

:

..., - 4, - Vi2, - 3, - i
0, + 1, + ii, -.

Such a number represents not merely a magnitude, but

rather a magnitude and one of two opposite directions or
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senses. These two opposite " senses " are of various kinds

according to tlie quantities considered. They are often ex-

pressed by such phrases as :
" to the right of " and " to the

left of," " above " and " below," " greater than " and " less

than," " before " and " after," etc. Thus + 10° of temperature

means a temperature 10° greater than the arbitrary temperature

which we have agreed to indicate by 0° ; whereas — 5° means

a temperature 5° less than the temperature indicated l)y 0°.

It should be noted that 0° of temperature does not mean the

absence of temperature.

6. Magnitudes and Directed Quantities. We have seen

in the last two sections that a number may represent simply a

magnitude; or, that a number may represent a magnitude and

one of two opposite directions. The numbers of arithmetic serve

the former purpose, the positive and negative numbers of

algebra serve the latter. Thus the number 5 represents

simply a magnitude, such as a distance of five miles between

two stations or a period of time of five hours. The numbers

-h 5 and — 5 also represent magnitudes of five units ;
but

they represent more than this. They may tell us, for example,

that a station is five miles east of a certain place denoted by

and that another station is five miles west of the place denoted

by 0, respectively ; or that an event took place five hours after

or five hours before a certain event.

We may then distinguish two kinds of quantities : (1) mag-

nitudes, and (2) so-called directed quaiitities. Examples of the

former are : the length of a board, the weight of a barrel of

flour, the duration of a period of time, the price of a loaf

of bread, etc. Examples of the latter are : the temperature (a

certain number of degrees above or below zero), the distance

and direction of some point yl on a line from some other

point B on the line^ the time at which a certain event
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occurred (a certain number of hours before or after a given

instant) ; etc.*

Geometrically, the distinction between directed quantities

and mere magnitudes corresponds to the fact that, on the one

hand, we may think of the line segment AB as drawn from A to

B or from B to A, and, on the other hand, we

may choose to consider only the length of

such a segment, irrespective of its direction.

Figure 3 exhibits the geometric representation

of 5, 4- 5, and — 5. A segment whose direc-

tion is definitely taken account of is called a directed segment.

The magnitude of a directed quantity is called its absolute

value. Thus the absolute value of — 5 (and also of -h 5) is 5.

7. Further Remarks concerning Scales. Scales, both arith-

metic and algebraic, occur in practice in a variety of forms. We have

hitherto considered only the simplest form, in M^hich the scale is con-

structed on a straight line and in which the subdivisions corresponding

to the numbers 1, 2, 3, ... (and in case of the algebraic scale also those

corresponding to the numbers — 1, —2, —3, •••) are at equal intervals.

Neither of these two conditions is essential. A scale may be constructed

on a curved line (a circle, for example, in which case it is sometimes

called a dial). Scales are also used in which the intervals between the

points representing the whole numbers are not equal. Such a scale is

called a non-uniform scale. The scales on some forms of thermometers,

on a slide rule (see p. 252), on certain types of ammeters and pressure

gauges, etc., may serve as examples of non-uniform scales. The scales

discussed in §§ 4, 5 are then to be described more fully as rectilinear and

uniform. In the future, unless specifically stated otherwise, a scale will

always mean a uniform scale.

* We are here considering only magnitudes in one of two opposite directions

It is also possible to consider as quantities magnitudes taken in any direction

in a plane or in space. Thus a force has a certain magnitude

and is exerted in a certain direction ; it could be completely

represented by a line segment whose length represents the

magnitude of the force and whose direction (shown by arrow-

head) represents the direction in which it acts. Such quantities are called

vectors. We shall have occasion to refer to them again (Chap. XVIII)

.
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8. Use of Line Segments to Represent Quantities. Statis-

tical Data. A common use of line segments to represent

quantities is in connection with the graphic representation of

statistical data. The table below, for example, gives the areas

of the New England States ; the adjacent figure represents

these areas by means of line segments.

Area of New England States

States Maine Vermont
New

Hampshire
Massa-
chusetts

Connec-
ticut

Rhode
Island

Square Miles 33,040 9,565 9,305 8,315 4,990 1,250

Maine

Vermont

New Hamp,

Massachusetts

Connecticut

Rhode Island

JO 15

Fig. 4

?o 25 30 Thous.sq.miles

The method of constructing such a graphic representation

should be clear without further comment.

The above areas could also be represented by areas, as in the following

figure.

Vt. N.H. Mass.

E3
Fig. 5

In general, this method of representation is not so serviceable. Why ?



I, § 8] REPRESENTATION OF FUNCTIONS 7

EXERCISES

1. From the following table represent graphically by means of line

segments the enrolment in Dartmouth College during the years 1901-1916

:

'01-'02 '02-'03 '03-'04 '04-'05 '05-'06 '06-'07 "07-'08 '08-'09

686 709 802 857 927 1058 1131 1136

'09-'10 'lO-'ll '11-'12 '12-'13 13-' 14 '14-' 15 '15-'16

1197 1165 1242 1246 1284 1336 1422

Use a convenient unit to represent 100 students (say \ in.). Can you

then represent the data with complete accuracy ? Why ?

2. Represent graphically the size of the libraries of the following

institutions :

No. of Volumes No. of Volumes

Harvard 1,180,000 Williams 80,000

Yale 1,000,000 Amherst 110,000

Dartmouth 130,000 Wesleyan 100,000

Brown 115,000 Univ. of Vermont . . 91,000

3. Take the edge of a sheet of paper and mark on it a point A. Place

this edge along the segment representing the area of Vt. in Fig. 4, the

point A coinciding with the left-hand extremity of the segment. Mark
the right-hand extremity by a point B on the paper. Do the same with

the segment representing N. H., placing the point B at the left-hand

extremity, however, and obtaining a new point C, corresponding to the

right-hand extremity. Continue this process for the states Mass., Conn.,

and R. I. The total segment represents the sum of the areas. Show that

Me. has an area almost as great as that of the other N. E. states com-

bined. The process just described in the above exercise is known as

graphic addition.

4. Describe a similar process for graphic subtraction.

5. Show that the distance between two points of an arithmetic scale

can always be found by subtraction. Is the same true for the points of

an algebraic scale ? What is the meaning of the sign of the difference ?

6. Two algebraic scales intersect at right angles, the point of intersec-

tion being the point of each scale, and the units on both scales being

the same. Show how to find the distance from any point on one scale to

any point on the other. Would your method still be applicable, if the

units on the two scales were different ? Explain your answer.

7. In constructing Fig. 5 what theorem of plane geometry regarding

the areas of similar figures is used ? Could the result of Ex. 3 have been

readily obtained from the representation in Fig. 5 ?
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9. The Investigation of Functions. We are now ready

to consider in some detail a few special examples of func-

tions, in order to familiarize ourselves with certain gen-

eral characteristics a function may possess, with certain

methods for the representation and study of functions, and
with the terminology. This is desirable before taking up the

more systematic study of general types of functions.

10. Example i. Tlie temperature as a function of the time.

The temperature at a given place is a function of the time of

day. At any given time we can determine the temperature by

/ 7 'Wednesday I S TJmrsday J 9 Fn 1<j;/

Fig. 6

simply reading an ordinary thermometer. For the meteorolo-

gist, however, the actual temperature at any instant is of less

importance than the changes in the temperature that take place

during a period of time (such as a day, a month, etc.). To
trace these changes he must know the temperature at every
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instant. For this purpose he makes use of a self-recording

thermometer. A portion of a record of such a thermometer is

given in Fig. 6.

The way in which such an instrument works is briefly as follows.

The pivoted lever shown in the figure (Fig. 7) carries a pencil point. The
mechanism of the instrument causes the pencil end of the lever to rise or

fall as the temperature rises or falls, so that if a vertical thermometer

scale* were adjusted behind the pencil point we could read off the

Fig. 7

temperature on this scale. The pencil point rests against a strip of paper,

ruled as in Fig. 6, which is mounted on a drum. Clockwork causes this

drum to rotate uniformly at the proper speed. The rulings on the strip

of paper now explain themselves. The distance between two successive

horizontal lines corresponds to 2° of temperature. The distance between

two successive vertical arcs corresponds to two hours. The temperature

at any instant can then be read from the record on the strip of paper.

The way in which such a record may be used is illustrated

by the following questions, which refer to the record of Fig. 6.

* Since the pencil moves on an arc of a circle, this vertical scale is con-

veniently constructed on such an arc, rather than on a straight line.
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1. What was the temperature at noon on each of the three days given ?

2. What was the temperature at midnight between Wednesday and

Thursday ? At 6 p.m. on Friday ?

3. What was the maximum and the minimum temperature on each of

the three days, and at what times did it occur ?

4. When was the temperature 50° ? During what periods was it above
50°?

5. How would a stationary temperature be recorded ? A rapidly

rising temperature ? A rapidly falling temperature ?

6. By how many degrees did the temperature change on Wednesday
from noon to 2 p.m. ? Was this change a rise or a fall ?

7. During what two hours on these three days did the greatest rise in

temperature occur ?

8. When did the most rapid rise in temperature occur ? When the

most rapid fall ?

9. What was the average rate of increase (in degrees per hour) in the

temperature from the minimum on Thursday to the maximum on Thurs-

day ? The average rate of decrease from the maximum on Wednesday to

the following minimum ?

11. Graphic Representation. In the preceding example we
exhibited the temperature as a function of the time by means

of a curve drawn with reference to a time scale and a tempera-

ture scale. Such a curve is called a graph of the function in

question. Such a graphic representation gives a vivid picture

of the function ; but it is limited in accuracy. Why ? Can a

change in temperature of 0.1° be distinguished on this graph ?

12. Example 2. Speed in terms of the time. Keadings of

the speedometer of an automobile taken every five seconds

from a standing start are given in the following table :

Number of seconds after start 5 10. 15 20 25 30 35

Speed in miles per hour 2 6 7 16 21 28 36

We proceed to construct a graph of the function thus ob-

tained, as follows. We take a piece of square-ruled paper and

on one of the horizontal lines (which for convenience we draw

more heavily) construct a uniform scale to represent the time
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(Fig. 8). On the vertical lines through the points representing

5, 10, 15, 20, . . . seconds we lay off segments to represent the

speeds at the respective instants. This is most conveniently-

done by constructing on the vertical line through a scale

representing speed in miles per hour. Thus, by reference to

the scale indicated in the figure, the point A represents the
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Speed of an Automobile

Fig. 8

corresponding values : 15 seconds and 7 miles per hour. The

other points indicated in the figure are now readily located, or

" plotted," in similar fashion. The final step in constructing the

figure consists in drawing a " smooth curve " through the points.

The curve thus obtained may be used as was the tempera-

ture curve discussed in the previous example. We might, for

example, conclude from this figure that the speed of the car at

the end of 23 seconds was probably about 18 ^ miles per hour.
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The necessity of saying " probably ", however, exhibits an

essential difference between this example and the former one.

In case of the temperature record the temperature at every

instant was automatically recorded ; any point of the curve in

that example was as significant as any other point. In the

present example the only speeds actually measured are those

specifically listed in the above table. And yet the conclusion

stated above regarding the speed of the car at the end of 23

seconds is justified. Why ?

1. What was the probable speed of the car at the end of 27 seconds?

2. How long did it take the car to pick up from to 30 miles per hour ?

3. The driver probably shifted gears between the 10th and 15th seconds.

What can be said of the reliability of the curve during this interval ?

4. How is the steepness of the curve related to the rate at which the

speed is increasing ?

6. Is it possible to calculate, by the use of this figure, approximately

how far the car traveled during the first 35 seconds ?

13. Variables. It is desirable to introduce at this point a

certain terminology. In the preceding examples we have

considered temperature and speed as functions of (i.e. de-

pendent on) the time. We have considered several different

instants of time and the corresponding values of the tem-

perature and the speed. Whenever, in a given discussion,

we consider a number of different values of a quantity,

such as time, or temperature, or distance, or weight, etc.,

we call such a quantity a variable. In the above examples,

the time and the temperature and the speed are all varia-

bles ; and, since in the first example we have thought of

the temperature as depending on the time, we may speak

of the temperature as the dependent variable, of the time

as the independe7it variable. It is often more convenient,

however, to call the dependent variable simply the function
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and the independent variable the variable. Thus, in the

second example, the speed was the function and the time

was the variable.

14. Tabular Representation. Interpolation. In the second

example we secured data concerning a function by measurement

and exhibited the corresponding values of variable and function

by means of a table of values. Such a table is called a tabular

representation of the function. The accuracy of such a repre-

sentation is limited only by the precision of measurement.

Such a table, however, gives an incomplete description of the

function. AVhy? The process of obtaining values of the

function for values of the variable that lie between the re-

corded values stated in the table is called interpolation.

When the interpolated values are read from a graph of the

function, the process is known as graphic interpolation. The

answers to the first two questions at the end of § 12 were

obtained by graphic interpolation.

15. Example 3. Volume of ivater as a function of the tem-

perature. When 1000 cc. of water at 0° centigrade is heated,

it is found that the volume of the water changes according to

the following table.

Degrees Centigrade

Cubic Centimeters 1000.00

2

999.90

4

999.87

6

999.90

8

999.98

Degi-ees Centigrade

Cubic Centimeters

10

1000.12

12

1000.32

14

1000.57

16

1000.86

20

1001.61

It requires a rather careful examination of this table to learn

that as the temperature (the variable) is increased 'from 0°

the volume of the water (the function) decreases and then in-

creases. A graphic representation of this function, analogous

to the examples already considered in §§ 10, 12, would have

yielded this result at a glance. It is our next concern to
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see how such a representation can be constructed, in this

case.

To this end we a take a piece of square-ruled paper and on

one of the horizontal lines construct a uniform scale to repre-

sent temperatures. At the points representing 0°, 2°, 4°, 6°,

•••, we would then lay off on the vertical lines distances that are
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to represent the volumes in which we are interested.

However, at this point a difficulty presents itself. The

numbers representing the volumes in question are so large, and

the differences between the volumes for the various tempera-

tures so small, that, if we choose the unit on the vertical

scale small enough to represent these volumes on a sheet of

paper of convenient size, it would be a practical impossibility
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to represent the volumes with sufficient accuracy to make the

diiferences in the volumes distinguishable. It is precisely

these variations in volume, however, in which we are primarily

interested.

To overcome this difficulty, we adopt the expedient of ex-

hibiting merely that portion of the graphic representation in

which we are primarily interested, and are then able to use a

largely magnified scale. That is, we observe that all the

volumes in which we are interested lie between 999.00 cc. and

1001.00 cc. We may then assume that the points on the line

on which we constructed the temperature scale are at a height

representing 999.00 cc. (Fig. 9). In other words we suppose

the zero point' of the vertical volume scale to be a great dis-

tance below the point at which we are working. We construct

a portion of the volume scale on the vertical line through 0,

marking the latter point 999.0 and choosing the unit on this

scale sufficiently large to meet our requirements. In the

figure, as drawn, each of the vertical divisions represents

0.1 cc. The construction of the points P, Q, R, ••• is then

readily made. A smooth curve drawn through the points thus

plotted then gives the graph *of the function.

Here, again, the points in the curve between the points

given by the table are uncertain ; but the regularity with

which the given points are arranged together with the nature

of the phenomenon we are considering leaves little room for

doubt that, if the volumes for 1°, 3°, 5°, — should be measured

and the resulting volumes plotted, the resulting points would

be located upon (or at least very near to) the curve drawn.

1; What is the volume of water at 1° ? at 19° ?

2. What is the minimum volume, and at what temperature does it

occur ?

3. At what temperature besides 0° is the volume 1000.00 cc?
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EXERCISES

1. The following temperatures were observed at Hanover, N.H., on a

certain day in February, 1914 :

Midnight -12°F.
1 A.M. -13° 9 a.m. - 12° F. 6 P.M. + 18° F.

2 A.M. -14° 10 A.M. - 2° 6 p.m. + 11°

3 a.m. -15° 11 A.M. + 4° 7 P.M. + 6°

4 A.M. - 17° Noon + 10° 8 p.m. + 2°

5 A.M. -20° 1 P.M. + 12° 9 P.M. + 1°

6 A.M. -21° 2 P.M. + 14° 10 p.m. 0°

7 A.M. -22° 3 p.m. + 19° 11 p.m. - 2°

8 a.m. -19° 4 p.m. + 22° Midnight -' 4°

Plot the corresponding points on square-ruled paper, and draw an

approximate graph of the function. Assuming this graph to be correct,

what was the temperature at 6.30 a.m.? At 6.30 p.m.? What was the

total range (the difference between the maximum and the minimum)
of temperature during the day ? How long did it take the temperature

to rise from its minimum to its maximum ? At what average rate in

degrees per hour did the temperature rise during this period ?

2. A stiff wire spring under tension is found experimentally to stretch an

amount d under a tension T as follows :

r in lb 10 15 20 25 30

d in thousandths of in. . 8 . 12 16.3
'^

20 23.5

Plot the above data. What would the stretch be when the tension is

12 1b.? 271b.? 23 1b.?

3. The intercollegiate track records are as follows, where d is the dis-

tance run and t is the time :

d 100 yd. 220 yd. 440 yd. 880 yd. 1 mile 2 miles

t' 9^ sec. 2H sec. 48 sec. 1 m. b^ sec. 4 m. 14f sec. 9 m. 23| sec.
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Plot these records by points in a plane, and draw a smooth curve through

them. Are the points of this curve significant ? Why ? What would

you expect the record for 600 yd. to be ? For 1600 yd.? For 1000 yd.?

Compare the results of these interpolations with the actual records for

these distances.

4. The following table shows the distance at which objects at sea-

level are visible from certain elevations :

Elevation Distance Elevation Distance Elevation Distance

Feet Miles Feet Miles Feet Miles

1 1.3 40 8.4 200 18.7

5 3.0 50 9.3 300 22.9

10 4.2 100 13.2 500 29.6

20 5.9 150 16.2 1000 33.4

30 7.2

Plot the graph of this function. Use a different scale for elevation for

values from 100 to 1000 ft. from that used from 1 to 50 ft. Why ?

5. The following is an extract of the mortality table prescribed by

statute in most states as the basis on which the reserves of life insurance

companies shall be computed

:

Age Number
Living

Age Number
Living Age Number

Living

10

15

20

26

* 30

35

100,000

96,285

92,637

89,032

85,441

81,822

40

45

50

55

60

65

78,106

74,173

69,804

64,563

57,917

49,341

70

75

80

85

90

95

38,569

26,237

14,474

5,485

847

3

Draw the mortality curve. Of 100,000 living at the age of 10 years

approximately how many would be alive at 32 years ? At 57 years ?

How would you represent on the graph the number dying during any

given period of five years ?
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16. Empirical Functions and Arbitrary Functions. The
examples of functions we have hitherto considered have been

taken from observed measurements of relations existing in

nature and life about us. Such functions are called empirical.

Another type of functions may now engage our attention.

They may be called arbitrary or artfjicial The following will

serve as an example.

17. Example 4. Letter postage. According to the postal

regulations the postage on letters is fixed at two cents per

uu
10

s

e

:

2 3 4

Letter Postage

Fig. 10

G Ounces

ounce or fraction thereof. The graph showing the relation

between the amount of postage and the weight of the letter

is then given by Figure 10.

18. Constant Functions. Continuous and Discontinuous

Functions. The graph just referred to exhibits two peculiar-

ities that we have not yet had occasion to observe in connection

with a function.

(1) The value of the function may make a sudden jump as

the variable passes through certain values (in this case when

the weight passes through the values 1 oz., 2 oz., etc.) without

taking on the intermediate values. In the present case, as the

weight is increased from exactly 1 oz. to the slightest amount
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above 1 oz. the postage jumps from 2 cents to 4 cents. A
function with such breaks, or changes of a definite amount

for no matter how slight a change in the variable, is said to be

discontinuous for those values of the variable at which the

break or jump occurs.

A function, on the other hand, whose graph is a continuous

line or curve without such sudden breaks or changes is said to

be a continuous function.*

(2) Portions of this graph are horizontal straight lines, which

means that certain changes in the variable produce no corre-

sponding change in the value of the function. Thus, the

postage does not change as the weight of the letter is in-

creased from slightly more than 1 oz. to 2 oz. In such a case

we say that the function is constant (or stationary) for the

interval of the variable in question.

We should observe, further, that the graph of the function

as drawn does not furnish a unique value for the function at

the points of discontinuity, i.e. when the weight is 1, 2, 3, •••

oz., since there is nothing to indicate whether we should take

the lower or the higher value. As a matter of fact the arbi-

trary definition of the function specifies that the lower value is

to be taken.

19. More about Arbitrary Functions. We must not assume,

of course, from the preceding example that every arbitrary

function is discontinuous.

In fact, we should note that if we take any square-ruled

paper, construct on it a horizontal scale, any number of which

we will designate by x, and a vertical scale, any number of

* The word continuous is used in mathematics in a highly technical sense,

the full discussion of which is beyond the scope of an elementary course.

The definition of the term given above is sufficiently precise for our present

purposes. Later we shall have more to say of it.
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which we will call y, and then draw an arbitrary curve across

the paper, as in Fig. 11, we thereby define a relation between

the numbers x of the horizontal scale and the numbers y of

the vertical scale, such that to every value of x corresponds a

certain value (or possibly a set of values) of y ; i.e. we define

y as a function of x.* The .reason for the phrase in paren-
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theses in the last sentence is as follows. If the curve we draw

is such that for any value of x the corresponding vertical

line cuts the curve in more than one point, there will be

associated with such a value of x more than one value of y
(Fig. 12). The variable y is in such a case still a function of

X, since the values of y are determined by the values of x.

The distinction between functions of the latter type and those

previously considered is made by the following definitions

:

If to every value of the variable under consideration there

corresponds a single value of the function, the function is said

to be single-valued or one-valued. If to any value of the vari-

able corresponds more than one value of the function, the

latter is said to be multiple-valued.

*The accuracy with which a function is defined by its grapb depends on

th6 accuracy with which it is possible to read the two scales of reference and
the ** fineness " of the curve.
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We shall for the present be concerned primarily with one-

valued functions only, although one example of a two-valued

function will occur soon. Multiple-valued functions will be

considered later (Chapter X).

EXERCISES

1. From the following data construct a graph showing the cost of

domestic money orders in the United States :

Amount of Order Kate Amount of Okder Katk,

•

Not over $ 2.50 3 cents Over $30.00 to | 40.00 15 cents

Over .| 2.50 to |5.00 5 cents Over 40.00 to 50 00 18 cent^

Over 5.00 to 10.00 8 cents Over 50.00 to 60.00 20 cents

Over 10.00 to 20.00 10 cents Over 60.00 to 75.00 25 cents

Over 20.00 to 30.00 12 cents Over 75.00 to 100.00 30 cents

2. Draw a figure showing the rates for parcel-post packages for zone

1 ; for zone 2 ; for zone 3. Compare these graphs.

3. Draw a figure to represent the cost of gas in your own city. Is

there a different rate for large consumers ? If so, will this show clearly

on the graph ? How ?

4. On a piece of square-ruled paper draw graphs of continuous func-

tions which are rapidly increasing ; rapidly decreasing ; slowly increas-

ing ; slowly decreasing.

5. Draw the graph of an arbitrary function which is increasing and in

which the rate at which it increases is increasing. Also that of an in-

creasing function in which the rate of increase is decreasing.

20. Analytic Representation of Functions. We have

hitherto considered two methods of representing a function, the

graphic and the tabular. There is a third method, called the

analytic, which in its simplest form consists of the expression

of the function in terms of the variable by means of d, formula,

from which the corresponding values of the variable and the

function can be computed. The following will serve as examples.
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21. Example 5. Capital and interest. The amount A in t years

of $ 1000 drawing simple interest of 5 % is given by the formula

(1) ^ = 1000 + 50<.

By substituting for t a suc-

cession of values and com-

puting the corresponding

values of A^ we obtain from

this formula a tabular rep-

resentation of the function.

This in turn can be repre-

sented graphically. The

a
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A (dollars) 1000 1050 1100 1150 1200 1250 1300

table above and Fig. 13 are the

result.* The points plotted ap-

pear to be on a straight line.

Prove that they are.

22. Example 6. TJie

area of a square. The area

(in square inches) of a square

whose side is x inches long is

given by the formula

y = x2.

From this equation, we readily

compute the following table.

^

Jl
m -t -.16 /-

t
7

19 ~J-12 2

"F
5? y _ _ _

^
s t - - ~

y
A_

, Z
^ 4-7

.<^

0^ 1 2 s 4 '0

Inches

Fig. 14

X (in.) . . 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

y (sq. in.). 0.25 1.00 2.25 4.00 6.25 9.00 12.25 10.00

* In practice bankers do not take account of fractions of a day in comput-

ing interest. Strictly speaking, therefore, the graph of the function A, as

used in practice, is discontinuous. This practice of bankers is, however, dic-

tated by convenience. It does not alter the fact that the function, as such, is

continuous.
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Using these values, it is now easy to draw the graph, which is shown
in Fig. 14.*

X
M.

*iL

Fig. 15

23. Example 7. The function de-

fined by a circle. It is often desirable

to obtain an analytic representation of a

function, originally given graphically or

by means of a table. Such an analytic

representation is sometimes easy to obtain.

Suppose, for example, that on square-ruled

paper an a:-scale and a ?/-scale have been

constructed with the units on the two

scales equals and suppose that with the

common 0-point of the scales as a center

a circle is drawn with a radius of 2 units (Fig. 15). The functional rela-

tion between the variables x and y defined by this curve is to be expressed

by means of a formula.

If P is any point on the circle, the absolute values of the x and the y of

this point form the legs "of a right-angled triangle of which the hypotenuse

measures 2 units. By a well-known theorem of geometry we have then

y2 = 4 — a;2 or

y =± V4 — x^.

This is the analytic representation sought. It may be noted that we
have here to do with a two-valued function.

24. Range of a Variable. We had occasion some time ago

(§ 13) to introduce the term variable. In the future such a

quantity will generally be represented by a symbol, such as a;,

or 2/, or t, etc. Indeed this was done in some of the preceding

examples. The various values attached to such a symbol

throughout the discussion are numbers. These numbers con-

stitute the range of the variable in question.

The range of a variable is usually determined by the nature

of the problem under consideration. Often it is very definitely

restricted. Thus in the case discussed in the last article the

* When, as here, the only fractional parts of a unit which occur are halves,

quarters, etc., it is convenient to use a ruled paper on which the larger units

are subdivided into four or eight parts instead of ten.
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range of x (as well as that of y) consists of all (real) numbers

from — 2 to + 2, and no others. For numbers outside this

range, the function in question is not defined. Again, in the

case of the mortality table considered in Ex. 5, p. 17, the range

of the dependent variable (the number of persons living at a

given age) is restricted to whole numbers less than 100,000

;

fractional values of the variable are here meaningless.

25. Increasing and Decreasing Functions. A function

which increases when the variable increases is called an in-

creasing function ; if, on the other hand, the function decreases

as the variable increases, the function is called decreasing.

Thus the amount A of capital and interest recently considered

is an increasing function of the time t, throughout the range of

the latter. Also, the area of a square is an increasing function

of the length of one of its sides. On the other hand, the num-

ber of people livhig at a given age is a decreasing function of

the age. A function may be increasing for certain values of

the variable and decreasing for certain other values. Thus,

the temperature is during certain portions of the day an

increasing function, during other portions a decreasing func-

tion. The volume considered in § 15 is a decreasing function

of the temperature T, from T = to T = 4, and an increasing

function for values of T greater than 4.*

If the two scales with reference to which the grapli of a function is

constructed are jjlaced in the more usual way, so that the numbers on the

scales increase to the right and upward, respectively, what distinguishes

the graph of an increasing function from that of a decreasing one ?

* In the case of the circle discussed in § 23, the function has two " branches "

in the interval from x = — 2 tox=4-2, the one consisting of the positive

values of y, the other of the negative values of y. The function may be con-

sidered as consisting of two one-valued functions, one of which increases from

a;=— 2 to a; = and decreases from x = to x=-\-2, while the other de-

creases from x=— 2 to a; = and increases from a; = to x=-\-2.
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EXERCISES

1. If a body falls from rest, its speed v in feet per second at the end

of t seconds is given by the relation v = 32 t. Construct the graph of v as

a function of t.

2. The charge for printing n hundred circulars of a certain kind is

|) = 2 n + 10 dollars. Represent the function graphically.

3. The express rate r on a package is computed from the following

formula : r =-^(p — 30)+ 30, where w is the weight of the package in
100

pounds and^ is the charge per hundred pounds. Draw the graph of r as

a function of w, for each of the values p = 40, 60, 80, 100. What com-

ment would you make on this rule for p = 30, or for values of p less than

30 ? This is an example in which the range of the variable is arbitrarily

limited to be not less than a certain amount. The formula in this exer-

cise really gives r as a function of the two variables w and p.

4. When a body is dropped from a height of 200 ft., its distance s

from the ground at the end of t sec. is given by s = 200 — 16.1 1^. Draw
the graph of s as a function of t. In how many seconds will the body

reach the ground ? At what time is the speed of the body greatest ?

Least ? What relation has the steepness of the graph to the speed of

the body ? Why ? What are tlie natural limitations on the range of the

variable ?

5. In Fig. 13, the beginning of the J.-scale does not appear on the

graph. Why ?

6. Rate of increase. In the function of § 21, when < = 2, we have

A = 1100. Starling with this initial value of t, let f be increased by 1, by

2, by 3, ••• The corresponding values of A (i.e. the values of A when
^=2 + 1 = 3, 2 + 2=4, etc.) are respectively 1150, 1200, 1250, •., and

the corresponding increases in A over the initial value 1100, are 50, 100,

150, •••. We see then that for these values the increase in ^ is always

equal to 50 times the corresponding increase in t.* Show that the same is

true if we start with a different initial value of f, say t = 3. Prove, in

general, that starting with any particular value, say t '= ti, of t, and any

increase in t, say an increase equal to h, that the resulting increase in A
is equal to 60h; i.e. that the ratio

increase in A
^q

corresponding increase in t

* When a change in the value of the variable produces a certain change in

the value of the function, these two changes correspond to each other. We
may then speak of either change as corresponding to the other.
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7. From the result of Ex. 6, show that the graph of the function there

considered is a straight line.

8. Make an investigation similar to that in Ex. 6 for the function y=x^
considered in § 22 ; i.e. calculate the increase in y due to an increase

in X, under a variety of conditions. For example, let x = 2 initially, and

calculate the increases in y resulting from increases of 0.5, 1.0, 1.5, 2.0 in

X. For each case calculate the ratio :

increase in y

corresponding increase in x

Is this ratio constant ? Is the increase in y due to an increase in x of 1.0

the same when the initial value of x is 3 as it is when the initial value of x

is 2 ? How is the change in the steepness of the graph related to your

result ?

9. A car begins to move and gradually increases its speed in such a

way that in x sec. it has traveled y = x^ ft. Interpret in this new setting

the "increase in y due to a certain increase in x," as computed in the

preceding exercise. Show in particular that the "increase in y" is the

distance traveled by the car during the interval of time represented by

the corresponding " increase in x," and that the ratio

increase in y

corresponding increase in x

is the average speed of the car during this interval. Does this suggest

a method for computing approximately the speed of the car at a given

instant ?

10. A certain function y has the value 0, when the variable x is 0, and

has the value 4, when x = 2. The graph of the function is a straight line.

Draw the graph and tabulate, from the graph, the values of y when x=l,

3, 4, 5, C. What is the algebraic relation between y and x ?

11. The graph of a certain function is a straight line. Draw this

graph, knowing that y = 0, when x = — 1, and that y = 4, when x = 3.

Discover the equation connecting y and x.

26. Statistical Graphs. One of the most generally familiar

uses of the graph is in connection with the representation of

statistical data. The figure below represents the enrolment in

Dartmouth College during the years 1905-1915. The method

of its construction should be clear without further ex-

planation.
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An essential difference between this sort of graph and those

previously considered must, however, be noted. Strictly speak-

ing, the graph consists only of the points forming the corners
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Enrolment of Dartmouth College, 1905-1915

Fig. 16

of the broken line in the figure. The dates, 1905, 1906, ••• refer

to the beginning of the college year in September of the years

given, and the points plotted give the enrolment at the begin-

ning of each such year. The straight lines joining these points

are drawn merely for convenience, as an aid to the eye in follow-

ing the changes in the enrolment from year to year. The points

of these lines between the end points have no significance. The

range of the variable here consists of the finite number of dates,

1905, 1906, •••, 1915; and the function considered is discontin-

uous. In such a graph interpolation is obviously impossible.

Questions

(1) During what periods did the enrolment increase ? decrease ?

(2) What was the percentage of increase during the 11 years ?

(3) What was the average rate of increase (in students per year) from

1905 to 1915?
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(4) If the first point of the graph (1905) be joined to the last point

(1915) by a straight line (see figure), how is the steepness of this line re-

lated to the average rate of increase ?

EXERCISES

1. The maximum temperatures (in degrees Fahrenheit) at Hanover,

N.H., on successive days from Oct. 1 to Oct. 15, 1914, were respectively as

follows

:

59.6, 74.8, 79.7, 82.1, 78.9, 66.6, 61.4, 73.7, 82.5, 73.2, 78.9, 66.8, 55.0,

67.0, 63.5.

Construct a graph representing these data by a broken line. Is inter-

polation possible ? Why ?

2. American shipping statistics give the total iron and steel tonnage

built in the U.S. for the years 1900-1914 as follows :

Year Tonnage Year Tonnage Year Tonnage

1900 196,851 1905 182,640 1910 250,624

1901 202,699 1906 297,370 1911 201,973

1902 280,362 1907 348,555 1912 135,881

1903 258,219 1908 450,017 1913 201,665

1904 241,080 1909 136,923 1914 202,549

Draw the graph. Is interpolation possible ? Why ?

27. Summary. As has already been sufficiently indicated,

the object of our work thus far has been to make clear the con-

cept of a function. To this end we have considered a variety

of special functions. Confining ourselves at present to the con-

ception of what we have had occasion to define. as a single-

valued function of one variable, we have seen that the essential

characteristic of such a function may be defined as follows :

A variable y is said to be a function of another variable x, if

when a value of x is given, the value of y is determined.

A variable is a quantity which throughout a given discussion

assumes a number of different values. The values which a
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variable may assume constitute the range of the variable in

question.

The range of a variable may be limited or not according to

circumstances.

We have become acquainted with three methods of repre-

senting a function : the analytic, the tabular, and the graphic.

We have made a beginning in the classification of functions :

single-valued and multiple-valued functions ; continuous and dis-

continuous functions ; increasing and decreasing functions

;

functions of one variable and of more than one variable.

We have had occasion to note some of the questions that may
arise in the consideration of a function : To determine the

value of the function when the value of the variable is given

;

the converse problem, to determine the value (or values) of the

variable, corresponding to a given value of the function. Both

of these problems may involve the process of interpolation.

The maximum or minimum value of a function (and the

value of the variable for which this maximum or minimum

occurs) is often of importance. So also is the rate at which

a function changes its values. This, we have seen, is in-

timately connected with the steepness of the graph of the

function.

28. Algebra as a Tool. The methods to be used in the

future for the study of functions and their applications group

themselves naturally under three headings corresponding to

the methods of representing a function : graphs, analysis,

tables.

The first of these we have already considered. It has the

advantage of presenting the variation of the function vividly

to the eye ; in this respect it is the superior of either the

tabular or the analytic method of representation. It lacks
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precision, however, since any graph drawn on a piece of paper

is in the nature of the case an approximation.*

The analytic representation by means of a formula we have

touched only very briefly. One of its chief advantages is that

of the utmost precision and conciseness. This very conciseness,

however, tends to obscure the properties of the function. The

tools which enable a sufficiently skillful operator to bring out

the hidden properties inherent in a formula are comprised in

what is known as mathematical analysis, of which the processes

of elementary algebra form the foundation.

The more important functions have been tabulated. Such

tables are used primarily to facilitate numerical computations.

We shall have occasion to use tables frequently.

The next chapter is devoted to a brief discussion of certain

algebraic processes and of their relation to the graphic rep-

resentation already discussed.

QUESTIONS FOR REVIEW AND DISCUSSION

1. Give examples from your own experience of quantities that are

functionally related. In each case, state as many properties of the function

as you can (continuous or discontinuous, increasing or decreasing, etc.).

2. State some general laws and discuss the functional relations they

illustrate.

3. Would it be desirable to define a function as follows : y is a function

of x, if y changes its value whenever the value of x changes ? Why ?

4. Give, from your experience, concrete examples of the use of an

arithmetic scale. Of an algebraic scale. What are the distinguishing

characteristics of these two scales ?

5. Describe the three methods of representing a function and discuss

the advantages and disadvantages of each.

6. If the graph of a function y of x is a straight line, and the value of

the function is known for a; = 4 and for x = 5 (say these values are 20

and 26, respectively), how can the value of the function for aj = 4.5 be

calculated (not read from the graph) ? For x = 4.2 ? For a: = 6.7 ?

*0n the other hand, we can conceive, theoretically, of a graph which is en-

tirely accurate.
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MISCELLANEOUS EXERCISES

1. The following table gives the pressure of wind in pounds per square

feet in terms of the velocity of the wind in miles per hour

:

Miles per hour 5 10 15 20 30 40 50 60 70 80

Lb. per sq. ft. 0.1 0.5 1.1 2.0 4.4 7.9 12.3 17.7 24.1 31.5

Represent the function graphically. Determine approximately the

velocity which will produce a pressure of 10 lb. per square feet. What
does the increasing steepness of the curve signify ?

2. The following table, prepared by the U.S. "Weather Bureau, gives

the average monthly values of relative humidity at the stations given :

C3 <
5 ><

•-5

6

-<
5
o

>
o

p

New York 75 74 71 68 72 72 74 75 76 74 75 74

Chicago . . 82 81 77 72 71 73 70 71 70 72 77 80

New Orleans . 79 80 77 75 73 77 78 79 77 74 79 79

San Francisco 80 78 78 78 79 80 84 86 81 79 77 80

Plot on the same sheet of paper. Is interpolation possible ? Why ?

3. The following table gives the average weight of men and women for

various heights :

Height .

Weight in Lb.

Height
Weight in Lb.

Men Women Men Women

5 ft.

5 ft. 2 in.

5 ft. 4 in.

5 ft. 6 in.

128

131

138

145

115

125

135

143

5 ft. 8 in.

5 ft. 10 in.

6 ft.

6 ft. 2 in.

154

164

175

188

148

160

170

Represent the two sets of data on the same paper and draw any conclu-

sions that seem reasonable. Is interpolation possible ? Why ?

4. The attendance at a base ball park on successive days was as follows

:

1002, 1800, 1875, 1375, 1500, 2750, 3520. Represent these data by points

in a plane. Is a curve drawn through these points of any significance ?

Explain your answer.
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5. The London Economist gives the following table showing the net

tonnage of steamships and sailing vessels on the register of Great Britain

and Ireland from 1840 to 1912 :

Year Steamshii'
Sailing
Vessel

Year Steamship
Sailing
Vessel

1840

1860

1880

1900

87,930

464,330

2,723,470

7,207,610

2,680,330

4,204,360

3,851,040

2,096,490

1909

1910

1911

1912

10,284,810

10,442,719

10,717,511

10,992,073

1,301,060

1,112,944

, 980,997

902,718

Represent these data graphically on the same sheet of paper. What

fact does this graph vividly portray ?

6. The temperature drop t below 212° at which water will boil at differ-

ent elevations and the elevation h in feet above sea level are connected by

the relation h =1"^ + 517 1. Construct a table of values of h ior t = 0, 5,

10, 15, 20, 25, 30, and draw the graph of 7i as a function of t. At what

temperature will water boil on Pike's Peak, 14,000 feet above sea level ?

About how high is it necessary to go in order that water will boil at 200"^ ?



CHAPTER II

ALGEBRAIC PRINCIPLES AND THEIR CONNECTION
WITH GEOMETRY

29. Numbers and Measurement. We have already had

occasion to distinguish between two kinds of numbers :

(a) Numbers each of which represents a magnitude only

;

(6) Numbers each of which represents a magnitude and one

of two opposite senses, i.e. the so-called signed numbers.

It seems desirable at this point to recall the familiar classifi-

cation of these numbers and the way in which they serve to

give the measures of magnitudes. We confine ourselves first

to the numbers of Type (a) above.

Integers. The first numbers used were the so-called whole

numbers or integers,

1, 2, 3, 4, ...,

which represent the results of counting and answer the ques-

tion : How many ? They also represent the results of measure-

ments, when the magnitudes measured are exact multiples of

the unit.

The Rational Numbers. When the magnitude measured

is not an exact multiple of the unit of measure, other num-

bers called fractions must be used.
•' A\ 1 1 1 1 *B

These numbers are intimately asso- c^ . 1 1 ,/>

ciated with the idea of a ratio. ^' ^^

Fig. 17

Thus, in geometry, two line seg-

ments AB and CD are called commensurable, if there exists

a third segment PQ of which each of the other two is an

D 33
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exact multiple (Fig. 17). PQ is then called a common measure

of AB and CD. If AB is exactly m times PQ and CZ> is

exactly n times PQ, m and n being integers, we say that the

ratio ofAB to CD is m/n, and we write

AB^m
CD n'

If CD is the unit of length, we have

the measure ofAB — — •

A number which can be written as a fraction in which the

numerator and denominator are both integers is called a

rational number*

Such numbers suffice to represent the measure of any magni-

tude which is commensurable with the unit of measure.

The Irrational Numbers. If two magnitudes have no

common measure, they are called incommensurable. Thus we

know from our study of geometry that

the diagonal of a square (Fig. 18) is not

commensurable with one of its sides.f

Hence, the length of the diagonal of a

square whose side is 1 unit cannot be

expressed exactly by any rational num-

ber. To meet this deficiency the so-called

irrational numbers, such as the V2, were

introduced.

It is beyond the scope of this book to treat irrational num-

bers fully. But we may note that they serve to express the

* Observe that according to this definition the rational numbers include

the integers. The number "zero" is also classed among the rational num-
bers. See § 30.

t If AB and AC had a common measure /, such that AB = m x I and

AC = nX I, where ?n and n are integers, it would follow that n^ = 2in'^ ; but

this relation cannot hold for any integers in and «. Why ?
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ratio ofpairs of incommensurable magnitudes, and, in particular,

to express the measure of any magnitude which is incommensur-

able with the unit.

Moreover, any irrational number may be rejjresented approxi-

mately by a rational number with a7i error which is as

small as we please. This follows from the following con-

siderations.

It is important to note that the result of any actual direct

measurement is always a rational number. For example, in

measuring a distance, we use a foot rule marked into fourths,

or eighths, or thirty-seconds of" an inch, or else some more

accurate instrument divided into hundredths or thousandths of

a unit, and we always observe how many of these divisions are

contained in the length to be measured. The result is, therefore,

always a rational number m/n where n represents the number

of parts into which the unit was divided. Any such actual meas-

urement is, of course, an approximation. The greater the ac-

curacy of the measurement (and this accuracy depends among

other things on the number of divisions of the unit) the closer is

the approximation. Since we may think of the unit as divided

into as many divisions as we please, we may conclude that any

magnitude can be expressed by a rational number to as high a de-

gree of accuracy as may be desired. Thus, the length of the

diagonal of a square whose side measures 1 in. is expressed

approximately (in inches) by the following rational numbers

:

1.4, 1.41, 1.414, 1.4142. These decimals are all rational ap-

proximations, increasing in accuracy as the number of decimal

places increases, to the irrational number V2.*

* Surds, i.e. indicated roots of rational numbers, are not the only irrational

numbers. The familiar n = 3.14159 ••• is an example of an irrational number

which is not expressible by means of any combinatiou of radicals affecting

rational numbers.
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30. The Number System of Arithmetic. The (unsigned)

rational and irrational numbers, together with the number zero

(which is counted among the rational numbers), constitute the

number system of arithmetic.

31. The Nimiber System of Algebra. Corresponding to

any unsigned number a (except 0) there exist two signed

numbers + a and — a. The magnitude represented by a

signed number is called the absolute value of the number, and

is indicated by placing a vertical line on each side of the

number. Thus the absolute value of + 5 and of — 5 is 5 ; in

symbols, |+5|=| — 5|=5.
The signed numbers are called rational or irrational accord-

ing as their absolute values are rational or irrational. The

entire system of positive and negative, rational and irrational,

numbers and zero * is called the 7'eal number system and any

number of this system is called a real number. These

numbers are contained in the so-called number system of

algebra.^

* Note that zero is neither positive nor negative. It has no sign.

t The number system of algebra contains also the so-called imaginary or

complex numbers, which will be discussed later. It may be noted that the

words rational, irrational, real, imaginary, are here used in a technical

sense. The popular meanings of the terms have no significance. V2 is no

more " irrational " (i.e. absurd or crazy) than the number 2 ; and the im-

aginary numbers are just as "real" in the popular use of the term as are the

(technically) real numbers. Historically, the reason for the use of these

words is, however, connected with their customary meaning. For, while the

integers and rational numbers are of great antiquity, the irrational numbers

were not hitroduced until about the fifteenth century a.d., although incom-

mensurable ratios were discussed by the ancient Greeks. At that time their

nature was not thoroughly understood, and it was not unnatural then to

designate them as irrational. Similar remarks could be made about the

introduction of the imaginary numbers toward the end of the eighteenth

century. We may add that what we now call "negative" numbers were in

the fifteenth century often referred to as " fictitious numbers."
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32. Geometric Representation. Coordinates on a Line.

It follows from § 29 that the rational and irrational numbers

are just sufficient to express the length of any line segment.

Every segment on a line having one extremity at a given

point or origin can be represented by such a number;

and every such number will determine a definite one of these

segments, the unit of measure having been previously chosen.

This leads at once to the idea of an arithmetic scale, if we

confine ourselves to the numbers of arithmetic, and to the idea

of an algebraic scale, if we choose one of the directions on the

line to be positive, and use the real numbers of algebra to

represent the (now) directed segments. In the future we shall

generally confine our discussion to the algebraic case. No
confusion need arise from regarding an arithmetic scale as the

positive half of an algebraic scale, nor from regarding the

numbers of arithmetic as equivalent to the positive numbers

(and zero) of the real number system.*

It is often convenient to regard the number x which origi-

nally represented the length and the direction from to a

P
Fig. li)

point P of the line as representing the point P itself, in which

case we call x the coordinate of P (Fig. 19). When we have

chosen a point as origin, selected a unit of length, and

specified which of the two directions on the line is positive, we

say that we have established a system of coordinates on the

line. When this has been done, every point P of the line is

represented by a number, and every real number represents a

definite point of the line.

* For this reason we shall often omit the + sign in writing a positive

number ; e.g. write simply 5 for + o. The context will always tell whether

the number in question is signed or not.



38 MATHEMATICAL ANALYSIS [II, § 33

33. Coordinates in a Plane. We may now give the precise

mathematical formulation of the process already used (in con-

nection with the construction of the graphs of functions) for

" plotting " points in a plane. The essential features of this

process are as follows (Fig. 20). We locate arbitrarily in the

^

Secona quadrant First quadrant

+ 5

,Pi

^M.O
t/,

-^ 31,X' -5
;

" , J X

quadrant

^s .5
Pi

Third Fourth quadrant

Y'
Fig. 20

plane two algebraic scales, a horizontal one called the x-axiSj

and a vertical one called the y-axis. These two scales, called

the axes of reference^ intersect in the zero point of each scale

;

this point is called the origin. The position of any point P in

the plane is then completely determined if its distance and

direction from each of these axes is known. The units on the

two scales are arbitrary ; they may or may not be equal to

each other. The distance from either axis must, however, be

measured in terms of the unit of the other axis, i.e. of the axis

parallel to which the measurement takes place. Thus, in Fig.

20, where the units on the axes are different, the point Pj is

determined by the distance a; = 3 units from the y-axis (meas-
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ured in terms of the aj-unit) and the distance y = 2 units from

the a>axis (measured in terms of the y-\mit). Similarly, the

points P2, P3, P4 are determined respectively by the directed

segments OM2 and M2P2, OM^ and M.^P^, OM^ and M^P^ ; the

numbers representing these directed segments are signed

numbers, so that the number gives both the magnitude and the

direction of the segment. In such a system of rectangular

coordinates in a plane, unless specifically agreed on otherwise,

the positive direction on the a;-axis is always to the right; on

the 2/-axis, always upward.

We see, then, that every point in the plane is determined

uniquely by a pair of numbers, and, conversely, that every

pair of (real) numbers determines uniquely a point in the

plane. The two numbers thus associated with any point in

the plane are called the coordinates of the point ; the number

X (giving the distance and direction from the ?/-axi^) is called the

x-coordinate or the abscissa of the point, the number y (giving

the distance and direction from the aj-axis) is called the

y-cobrdinate or the ordinate of the point. Any point P in

the plane may then be represented by a symbol {x, y), where the

abscissa of P is written first in the symbol and the ordinate of

P is written last. Thus we may write (Fig. 20) Pi =(3, 2)

P, = (- 1, 4), P3 = (- V2, - 31), P, = (?, ?).

The two axes divide the plane into four regions called

quadrants, numbered as in the figure. The quadrant in which

a point lies is completely determined by the signs of the

coordinates of the point. Thus, the first quadrant is charac-

terized by coordinates (-{-, +), the second quadrant by

(— , +), the third by (— , — ), and the fourth by (+, — ).

34. Relations between Numbers. If two numbers a and

b represent two points A and B respectively on an algebraic

scale, we say that a is less than b (in symbols, a <b), it a is to



40 MATHEMATICAL ANALYSIS [II, § 34

the left of b, the scale being horizontal and the positive

direction being to the right.* The following obvious relations

are fundamental

:

(1) If a =5t 6, then either a < &, or 6 < a.

(2) If a < 5 and 6<c, then a<c.

EXERCISES

1. Is the date 1916 a signed number ? (Does it represent simply a

duration of time or does it represent a time after some arbitrary fixed

time ?) Would it be proper to represent the year 50 a.d. by + 50 and

the year 50 b.c. by — 50 ?

2. When we designate the time of day as " two o'clock," is " two" a

signed number ?

3. Are the (unsigned) integers used for any other purposes than to

express the result of counting or measuring ? ( House numbers, catalog

numbers, •••)

4. State some theorems of geometry concerning ratios.

5. Find a rational approximation of VS accurate to within 0.001.

6. Why is any actual measurement necessarily an approximation ?

7. Why is it incorrect to define a rational number as one " which does

not contain radicals ?
"

8. Why should irrational numbers be used at all, if it is possible to

represent any such number by a rational number to as high a degree of

approximation as may be desired ?

9. Explain /rom the definition of ratio why | in. and f^ in. represent

the same magnitude. Why m/n in. and pm/pn in. represent the same

magnitude,

10. Two segments measure | in, and f in., respectively. Show that

the ratio of the first to the second according to the definition is y^^. (Ob-

serve that ^ in. is a common measure of the two segments.)

11. Two segments measure m/n and p/q in. respectively. Prove that

the ratio of the first to the second is mq/np. (Find a common measure

of the two segments.)

12. Given that |a|<|6|, can we conclude that a<6? Why?
Given that

| a
| > | 6 1, can we conclude that a > & ? Why ?

* Likewise, a is greater than b (in symbols, a > b), if ^ is to the right of

B. Obviously, if a < 6, then 6 > a.
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13. Which is the greater, -3 or -4? —S-lor — tr?

14. Locate on a line the points whose coordinates are 2, — |, |, — 2,

6. What is the distance between the last two ? What signed number

represents the directed segment from the point + 5 to the point — 2 ?

15. Locate in a plane the points (2, 3), (— 2, 3), (2, — 3), (—2,-3),
referred to a system of rectangular coordinates, the units on the two axes

bfiing equal.

16. If the abscissa of a point is positive and its ordinate is negative,

in what quadrant is the point ? If abscissa and ordinate are both

negative ?

17. If the abscissa of a point in a plane is + 2, where is the point ?

If the ordinate is zero ? What characterizes the coordinates of a point

on the y-axis ? On the x-axis ? What are the coordinates of the origin ?

18. The units on the two scales being equal, what is the distance of

the point (3, 4) from the origin ? Of the point (— 1, 7) ? Of the point

(2, - 1) ? Of the point (a, b) ?

35. The Fundamental Operations. We shall now take up

briefly the fundamental operations of addition, multiplication,

subtraction, and division, and develop certain geometric inter-

pretations and applications connected with these operations,

which are of importance in what follows.

Addition. We note first that the operation of addition for

signed numbers has an essentially different meaning from that

for unsigned numbers. The addition of two unsigned numbers

expresses simply the addition of magnitudes. Thus, any two

magnitudes may be represented geometrically by the lengths

of two line segments. The segment, whose length represents

their sum, is obtained by simply placing the segments end to

end to form a single segment. (Compare the process of graphic

addition described in Ex. 3, p. 7.)

A signed number, on the other hand, represents a direction

as well as a magnitude ; it is represented geometrically by a

directed segment. Consider two signed numbers a and b.

They will be represented by two directed segments whose
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lengths are
|

a| and
1 5 1, respectively, and whose directions are the

same or opposite according as the numbers have the same or

opposite signs. Figure 21 represents the four possible cases.

The sum a + 6 is represented by a directed segment which

expresses the net result of moving in the direction represented

a
y 1

bI 1

a + b

1 a\ 1

1 b '

!
'

i—ds:

a+F o,+b

Fig. 21

by a through a distance equal to
|
« |, and then moving in the

direction of b through a distance equal to \b\. The segment

representing a -f 6 is the segment from the initial point of

these motions to the terminal point. (See Fig. 21.)

The difference in the meaning of addition in the case of unsigned and

signed numbers is clearly brought out by considering a simple concrete

example : Suppose you walk to a place five miles distant and back again

.

The total distance you have walked is 5 + 5 = 10 miles. These are un-

signed numbers. On the other hand, if you represent the trip out by + 6

and the trip back by — 5, which is entirely proper, the sum (+5)-f-(— 5),

which is equal to 0, does not represent the distance walked at all, but does

represent the net result of your walk measured from your starting point.

The total distance walked is represented by
|
+ 5

| -f- |

— 6 |.

It should be noted that the absolute value of the sum of

two numbers is not, in general, equal to the sum of their

absolute values. In fact all we can say in general on this

point is that

(1) k + ?>|<|«| + |^|.*

The equality sign holds only when a and h have the same sign.

* The symbol "^ is read " is equal to or less than."
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The geometric interpretations on the algebraic scale of add-

ing a number x to all the numbers of the scale consists of

sliding the whole scale to the right or left, according as x is

positive or negative, through a distance equal to
|
a;|. Figure 22

illustrates this operation for the value x = — 2.

Every number in the upper scale is the result of adding — 2

-4 -3 -2 -1 +1 +2 +3

'4 -3-2 -1 + i +2+3 +4

Fig. 22

to the number below it in the lower scale. Two important

consequences follow from this interpretation

:

(1) If a <C b and x is any (real) number, then a -{- x <. b -\- x.

(2) If a point P ivhose coordinate on a line is x is moved on

the line through a distance and in a direction giveyi by the number

h, the coordinate x' of its new position is given by the relation

(2) x' = X + /i.

An immediate consequence of the meaning of addition in

the case of directed segments is as follows. If A, B, C are

any three points on a line, then

(3) AB -\-BC = AC,

This relation holds no matter what the order of the pomts

on the line may be. In fact it is obvious that to move on a

line from Ato B and then to move from B to (7 is equivalent to

moving directly from A to C, no matter how the points are

situated on the line. As a special case of this relation we

have

AB-\-BA = 0, or AB = -BA.
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Multiplication. The product ab of two signed numbers

a and b is defined as follows :

(1) |a*| = |a|.16|.

(2) The sign of ab is positive or negative according as the

signs of a and b are the same or opposite.

The statement (2) involves the familiar law of signs :

(+)(+)=(+), (+)(-)=(-)(+)=(-). (-)(-)=(+)•

Geometrically, multiplication by a positive number x is

equivalent to a uniform expansion or contraction of the scale

away from or toward the origin in the ratio
| « | : 1, according

as
I

a;
I

is greater than or less than 1.

This statement will become clear on inspection of the follow-

ing figure (Fig. 23) which gives the construction for the multi-

FiG. 23

plication of every number on the scale by x. In the first figure

X has been taken equal to + 2, in the second equal to -\- ^.

The geometric interpretation of multiplication by a negative

number x consist? of a similar expansion or co7itraction in the

ratio
I

ic
1

: 1 combined with a rotation of the whole scale about

the origin through an angle of 180°. For such a rotation

will change each positive number into the corresponding nega-

tive number, and vice versa, which the law of signs requires.

Here again we may note two consequences of importance

:

1. If a < b and x is any (real) number, ax is less than, equal

to, or greater than bx, according as x is positive, zero, or negative.

2. If a scale is uniformly stretched (or contrax^ted), the origin
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remaining fixed, in sugJi a way that the point 1 moves to the point

whose coordinate is a, then the point whose coordinate is x will

mx)ve to the point whose coordinate is

(4) X' = ax.

Subtraction. To subtract a number b from a number a

means to find a number x such that x-{-b = a. We then write

x = a — b.

Such a number x can always be found. Representing a and

b by directed segments having the same initial point, the

meaning of addition tells us at once that

the segment from the terminal point of < —--

b to the terminal point of a represents

the number x sought. (See Fig. 24.)
^'°- ^

This shows, moreover, that to subtract a number b is equivalent

to adding the number — 5.*

Division. To divide a number a by a number b means to

find a number x such that bx = a. We then write x = a/b.

It is always possible to find such a number x, except when the

divisor b is zero. For we need merely reverse the construction

given for multiplication (Fig. 23) as

indicated in Fig. 25, first drawing

the line joining b on the original

scale to the point a on the multi-

i 6\ plied scale and locating the required

Fig. 25 point x on the multiplied scale by

a line through 1 on the original scale, parallel to the line ab.

In particular, we can always find a number x such tha!

* It may be of interest to recall here the fact that historically the negative

numbers were introduced in order to make the operation of subtraction

always possible (i.e. even in the case when the subtrahend is greater than

the minuend). But from what has just beeu said it appears that the device

adopted for rendering the operation of subtraction more useful and convenient

had the additional effect of making this operation unnecessary.
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bx = l,ifb=^ 0. This number 1/6 is called the reciprocal of h.

Hence, to divide by b (b =^ 0) is equivalent to multiplying by 1/6.

The Case 6 = 0. This case demands careful attention. Since

• « = for every number x, it follows that the relation • x = a

cannot be satisfied by any value of x, unless a is also ; and ivill

be satisfied by every value of x, if a is 0. Hence, by the definition

of division, the indicated quotient

x-^

has no meaning whatever when a ^0, and no definite mean-

ing even when a = 0. Hence, we conclude that division by

zero, being either impossible or useless, is excluded from the

legitimate operations of arithmetic and algebra.

36. The Function a/x. The Symbol oo . Whereas we have

just seen that division by zero is not a legitimate operation, it

is highly important for us to note what happens to the fraction

a/x when x assumes values approachiyig nearer and nearer to

zero ; as long as x does not equal zero, the indicated division

is possible. We wish then to consider the /;mcfio?i a/x = y for

values of x near 0. A table of corresponding values of x and y

is as follows

:

X 4 3 2 1 \ \ -4 -3 -2 - 1 -I -I

--: ia i« ha a 2a 4.a -\a -i« -la — a -2a -4a

Plotting the points (x, a/x) with reference to two rectangular

axes we obtain Fig. 26, where we have assumed a to be posi-

tive and have chosen the unit on the oj-axis to be a times the

unit on the 2/-axis.

An inspection of the table and the graph shows us that as x

decreases in absolute value, a/x increases in absolute value;
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more precisely, by choosing x sufficiently small in absolute

value, a/x can be made as large in absolute value as we please.

Further, when x = the expression a/x has no meaning.

We say the fmicUon is not defined for the value x = 0; or, the

range of the variable of this function does not include the value

X

Fig. 26

The sentence expressed in black-faced italics above is some-

times written in a species of shorthand :

00.

This looks like an equality involving a division by 0. But

it does not mean any such thing. The expression a/0 as indi-

cating a division by has already been pronounced illegiti-

mate. For this very reason we are at liberty to use the

symbol to mean something else without danger of confusion.

We accordingly use it as a short way of expressing the values

of the variable a/x as x is supposed to approach 0. Similarly,
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the symbol oo, read "infinity," does not represent a number at

all, but a variable which increases loithout limit. The above

equality is, therefore, an equality between variables, and is

simply a short way of writing the phrase " as the denomina-

tor of a fraction, whose numerator is constant and different

from zero, approaches zero, the value of the fraction increases

without limit in absolute value." Under these circumstances,

we also say " the fraction becomes infinite." The phrase

" equals infinity," which is sometimes heard, is very mislead-

ing and its use should be strictly avoided.

Returning to our table and graph, we note also that by

assigning to x a value sufficiently large in absolute value, the

value of a/x can be made in absolute value as small as we please,

but not zero. The shorthand expression of this fact is

00

or " as the denominator becomes infinite the fraction ap-

proaches 0."

37. The Directed Segment P^Pz- As an application of the

foregoing principles we will now derive a formula which will

often be used in the future. Let Pi and P^ be any two points

on an algebraic scale, and let their

coordinates be x^ and X2, respectively.

We desire to find the number repre-

senting the directed segment P1P2

in direction and magnitude. By definition x^ = OPi, Xo = OP2

(Fig. 27). Now, by § 35, Eq. 3, we have

P1P2 = P,0 4- OP2 = - OPi + OP2

= -Xi + X2,

or, finally,

/^i* 2 ^ •^2 — ^1*

Thus, if Xi = 2 and X2 = 5, X2 — x^ = -\- 3, and we conclude

P2 P,

Xi Q Xi

Fig. 27



II, § 38] ALGEBRAIC PRINCIPLES 49

that the length of the segment P1P2 is 3 units and that its

direction is positive (i.e. from left to right in the ordinary

setting). On the other hand, if cci = 3 and Xg = — 4, we have

X2— X1 — —I, and we conclude that the length of the segment

is 7 and its direction is negative (i.e. P2 is to the left of Pj).

38. Concrete Illustration of the Law of Signs. The law of

signs, as indeed many of the fundamental laws of algebra, is essentially

a definition, arbitrary from a logical point of view and dictated largely

on the grounds of convenience. The following concrete example will

show how in one instance the conventions adopted in the law of signs

for multiplication correspond to the concrete facts to be described.

If a train moves at a constant speed of v miles per hour, then in t

hours it will travel a distance = ^?i miles. Here v, t, s are unsigned num-
bers. Now, let us change the formulation somewhat, so as to introduce

the direction. At a given instant let the train be at a certain station 0;
let us count time from this instant (t = 0) so that any positive t desig-

nates an instant a certain number of hours after the instant t = 0,

and a negative t designates an instant a certain number of hours before

t = 0. Further, let the position of the train be determined by the signed

number s representing the distance and the
^^

direction of the train from 0, s being positive
[

^ ^

if the train is to the right of (Fig. 28). |=o *"*"

Finally, let the speed and the direction in -p^^ 28
which the train is moving be given by the

signed number v, v being positive if the train is moving to the right

(u =— 30, for example, would mean that the train is moving to the left

at the rate of 30 miles per hour).

Now consider the four cases : (1) v and t both positive
; (2) v positive

and t negative ; (3) v negative and t positive
; (4) v and t both negative.

Verify that the law of signs in the relation s = vt gives the sign to s

for which the actual position of the train in each case calls. [For

example : (1) If v and t are both positive, s = vt will be positive,

which is as it should be. For if the train is moving to the right, then

a certain number of hours after t = 0, when the train was at s = 0, it

will be a certain number of miles to the right of 0. (2) If v is positive

and t negative, s = vt is negative. This also is correct. For a train

moving to the right and arriving at O when t = 0, was to the left of

at any time before t = 0. Etc. ]
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EXERCISES

1. Under what conditions is|a + &| = \a\ +\b\?

2. Prove that if A, B, C, D, •••, i, M are any points on a line (in

any order) then AB + BC + CD + •" + LM = AM.

3. Graphic Addition. Given the directed segments, a, 6, c, d, e on

parallel lines (or on the same line), their sum a+6+c+cZ + e may be

found graphically as follows: On the straight edge of a piece of paper

mark a point ; lay the strip along the segment «, the point coincid-

^ - ing with the initial point of a ; mark the ter-
'' * minal point of a on the paper. Then slide the

paper parallel to itself so as to make it lie

along h and bring the mark just made into

coincidence with the initial point of h ; mark
the end-point of h. Then proceed similarly

for the segments c, d, e. The directed seg-

ment from to the final mark will then represent the sum sought. Why ?

4. Draw directed segments representing the numbers — 3, + 5, + 2,

— 6, and find their sum graphically.

5. Show how to construct a directed segment representing the prod-

uct of the numbers represented by segments a and h.

[Hint. Use the adjoined figure to determine the

magnitude of the product ; then determine the direc-

tion. Observe that for the construction of a product

we need to know the length of the unit segment, which

was not necessary for a sum.]

6. Show how to construct a segment representing a/h.

7. Determine the numbers representing the directed segments from

the first point of each of the following pairs of points to the second: -f- 8

and + 6, + 8 and -6,-2 and - 4, — ^ and + |, + 1.4 and - 2.1, — |

and - I, + -V- and + 3.14.

8. By computing the numbers representing the segments, verify the

relation AB + BC = AC, when the coordinates of A, B, C are, respec-

tively :

(a) 2, 3, 4
; (6) 2, - 3, 4; (c) - 2, 3, - 4

;
(d) -2,-3, 4.

9. Find the coordinate of the mid-point of the segment joining the

points whose coordinates on a line are 4 and 8 ;
— 3 and 5; — 2 and

— 5 ; Xi and X2.
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39. Insight and Technique. Most of our activities involve

two more or less distinct aspects : insight and technique. On

the one hand, we need to understand the nature of the thing

we are trying to do, on the other we need skill in doing it.

Theory and practice, planning and carrying out the plans, etc.,

are other ways of pointing the same distinction.

In your previous study of arithmetic and algebra the major

emphasis was on the side of technique. You learned at that

time how to carry out certain manipulations with numbers ; and

you gained more or less skill in using the processes. In the

present course, the emphasis is to be placed on the side of in-

sight, understanding, appreciation ; the technique of algebra is

to be used merely as a tool, not as an end in itself.*

40. Definitions. We propose now to recall very briefly a

few of the more important conceptions and processes of

algebraic technique. We shall begin with the definitions of a

few terms.

When two or more numbers are added to form a surriy each

of the numbers is called a term of the sum.

When two or more numbers are multiplied to form a 2)roduct

each of the numbers is called a factor of the product.

Any combination of figures, letters, and other symbols,

which represents a number, is called an expression. If the

equality sign (=) is placed between two expressions, the result

is called an equality, and the two expressions are called the

members or the sides of the equality.

An equality states that the two expressions represent the

same number.
-f

* However, we must maintain a certain amount of proficiency in the use of

algebraic processes. Hence " drill exercises " will not be wholly lacking in

what follows.

t Such a statement may or may not be a true statement. See § 47.
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Thus, suppose a, b, c, d, p, x, y represent numbers. Then

a — hx -{- 1 cdy = a (12 y"^ — p)

is an equality. The left-hand member is a sum of three terms;

the right-hand member consists of only one term, which is

a product of two factors. The second term of the left-hand side

is a product of two factors, while the second factor of the right-

hand side is a sum of two terms.

41. General Laws of Addition and Multiplication. The

following general laws we take for granted :

I. Concerning Addition :

1. Ariy tivo numbers may be added and their sum is a definite

member.

2. The terms of any sum may be rearranged and grouped in

any way without changing the sum.

Thus, if a, &, c, p, q represent any numbers whatever, we

have, for example, a -{-{b + c -^p) -\- q ={b -{- q) -\- {c -\- a) -\- p.

II. Concerning Multiplication :

1. Any two numbers may be nudtiplied and their product is a

definite number.

2. The factors of any product may be rearraiujed and grouped

in any way without changing the product.

Thus, if a, 6, c, x, y represent any numbers whatever, we

have, for example, {abc){axy)= a^bcxy ={yx){cba'^).

III. The Distributive Law : To multiply any sum by any

number m, we may multiply each term of the sum by m and add

the resulting j^foducts.

Thus, (a -{- b -\- cd -\- — -\- x)m = am -}- bm -f cdm + — + xm.

lY. The Law of Factoring : If every term of a sum con-

tains the same number m as a factor, the sum contains m as a

factor.

Thus am -\-bm -^ cdm -f ••• -f xm = m (a -f- & + cd + — -f x).
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Observe that IV is obtained from III by simply interchang-

ing the sides of the equality.

42. Raising to Powers. Integral Exponents. We recall

also at this point the meaning and use of integral exponents.

The symbol cc", where x represents any number and n is any

positive integer, is an abbreviation for the product of n factors

each equal to x, i.e.

x"" = x- X'X-" to n factors.

From this definition and Principle II (§ 41) it follows at

once that

/pm^n =(x'X' X '" to m factors) (x • x 'X ••• to n factors)

= X ' X • X "• to m + n factors,

and therefore

Ya x»^x^ = x^^'\

Similarly

V6 — = x^^'^, if m > n,
Xn

Xn ;t"

if n > m.

(xmy = x"" • x"" ' x"^ •" to n factors

r^m+m+m+ • ton term"

and

Also

and therefore

VI

Also

Vila

VII6

43. Axioms. Closely connected with Principles I, 1 and

II, 1 are the familiar axioms

VIII a If a = h and c = d, then a -^ c = b -^ d.

VIII b Ifa = b and g = d, then ac = bd.

(^m)n = x**'^^.

= a»b*K
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EXERCISES

1. Distinguish between insight and technique in the various professions

(surgery, dentistry, engineering, etc.).

2. Complete the following propositions

:

(a) The sum of any two integers is • •
•

(6) The product of any two integers is • •
•

3. What is the familiar expression in words for Principle VIII ?

4. Find the results of the following indicated operations :

(1) a;i0a;i2. (6) x^^-^x^ (11) (av^y.

(2) a^a^. 0) a^-^a^^. (12) (- cM»y.

(3) ft^fes. (8) -^. (13) (-0*.
a"

(4)
y2ny3«.

^g-j ^^4^8. (14) (r^S-)".

(5) X'»-%2. (10) (C2)6. '
(15) (-X2)».

5. Multiply x^* + x^y^ + i/2& by x2» — x'^y^ + y"^.

6. Divide x^" + y^n by x" + ?/".

7. Perform the following operations :

(1)25.24= (2)25.44= (3)32.23= (4)7i5^7i3 =

44. Discussion of Principles. In the preceding article

Principles V-VII were derived from I and II, while IV is a

consequence of III. We might now ask :
" How do we know

that Principles I, II, and III are true for all numbers ?
"

On these three principles the whole subject of algebraic

technique rests. They are so simple that they may appear at

first sight to be trivial. As a matter of fact their truth is by

no means obvious ; our unquestioned belief in them is the re-

sult of experience in using numbers. Were we to attempt a

general proof, we should find it a long and difficult process

which is out of place in an introductory course. Hence we

simply take them for granted.

A little reflection will show that these principles are not obvious. Take

for example the fact implied by Principle II, 2 : a times b is equal to h

times a ; and let us suppose that a and b are positive integers. Now,

2x3 means 3 + 3 and 3x2 means 2 + 2 + 2. By addition we observe
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that the result is in both cases 6. But that simply verifies the general

law when a = 2 and 6 = 3. We can thus verify the law in question for

any two special integral values of a and h. Not only would this be ex-

tremely laborious for large values ; it would still be only a verification for

a special case ; it would not be a general proof. Moreover, we have con-

fined ourselves to the simplest of all numbers, the positive integers ; while

II, 2 asserts among other things that ah = 6a, no matter what numbers

a and 6 represent (rational or irrational, real or imaginary) . As has been

indicated in the preceding paragraph, we are not concerned in this course

with proving these principles. Of great interest to us, however, are the

relations existing between numbers and geometry. Accordingly we have

suggested in the exercises below some geometrical interpretations of these

principles.which furnish intuitive proofs of certain restricted cases.

EXERCISES

1. An intuitive proof that ah = ha, in case a and 6 are positive inte-

gers : Let the integer a be represented by a group of a equal squares

placed side by side so as to form a row (see the figure, where a = 8).

The product 6 • a is then represented by the number of squares in 6 such

rows. Show that, if these rows be placed under each other (as in the

figure, where 6 = 6), it is seen that the total number of squares is also

equal to the number of squares in a columns each containing 6 squares.

Observe that while the figure is drawn for special values of a and 6, the

argument is general.

2. From a consideration of the adjacent figure

give an intuitive proof that 5 • (3 • 4) = 3 • (5 • 4)

.

Then by using the fact that ah = ha show that

(3 • 4) • 5 = 3 • (4 . 5). Can this argument be made
general to show (a • 6) • c = a • (6 • c), when a, 6, c are positive integers ?

4 4 A 4 4

4 4 4 4 4

4 4 .4 4 4



66 MATHEMATICAL ANALYSIS [II, § 44

3. From the adjacent figure, show how to use the idea of a rectangu-

lar pile of blocks to prove that (a • 6) • c = a • (& • c), when a, &, c are

positive integers.

^--^^4^-^7^

^

•^

j^'O^O^O' >'

^u^

4. Assuming that the area of a rectangle is equal to the product of its

base by its altitude, show that ab — ba, when a, b are any positive real

numbers.

5. By considering the adjacent figure, interpret

a b

geometrically the relation {^a \- b)c := ac -{ be.

6. Interpret geometrically the equalities

(a) (a + &)2 = a2 + 2 a6 + &2.

(6) (a + 6) (c + (?)=: ac + he ^- ad ^- bd.

d

€

7. Derive the equalities in Ex. 6 from Principles I-V.

[For 6 (6), we first consider c + d as a single number. Ill then gives

(a + 6)(c + d) = a(c + d) + 6 (c + d). Applying II and III to each of

the terms of the right-hand member of this equality, we get the desired

result. ]

8. Show in detail how the carrying out of the product (ax+6)(cx+d)
involves Principles I-V.

9. Show how these principles apply in the addition of 2 x^ + 7, 3 x + 2,

and 4 x2 + X -}- 3.
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45. Review of Algebraic Technique. We propose now to

take up a few of the most elementary portions of the tech-

nique of algebra. These are all that will be needed in the

immediate future. Other topics relating to technique will

be recalled when they are needed.

The technique of algebra is concerned altogether with the

transforming of expressions into other equivalent expressions

which serve better the purpose in hand. The principal pro-

cesses used are the following :

(a) Performing indicated operations and collecting terms. For ex^^

ample, collect the terms in x, ?/, and z in the following :
--^

2x4-72/ -3^; + y -\x—^y ^bz^ 3x. T"..''/'

The result \%x -\-1z. This involves Principles I and IV.

Perform the indicated operation and collect terms in

(x2_3a;-|-4)(x-2).

The result is a;-^ — 5 a;^ + 10 a: — 8. This involves Principles I-V.

(b) The use of special products. The following equalities should be

memorized

:

(1) (a-}-b)(a-6)=a2-62.

(2) (a + b)2 = a^ + 2a& + &2.

(3) (a-&)2 = a2-2ab + 62.

(4) (AC + a)(x -h b)= x2 + (a + 6) X + ab.

(c) Factoring. The following cases may be specially mentioned

:

i. I%e difference of two squares. Use special product (1). Thus

^9x^ - iy^ ={7 x« + 2y)(7 x^ - 2y).

ii. Trinomials of the form x^ + px + q.

Try to find two numbers whose sum is p and whose product is q, in

accordance with special product (4) . Thus to factor

x2 _ 6 X - 27

we notice that 3 and — 9 are two numbers which satisfy the requirements.

Hence,
a;2_6x-27 = (x+ 3)(x-9).

Again, to factor x2 — 10 x + 25, we notice that — 5 and — 5 are two

numbers satisfying the required conditions. Hence

x2 _ lOx + 25 = (x - 5) (x - 5) = (X - 5)2.
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EXERCISES

1. Perform the following operations :

(a) (a; -4) (2 a: + 3).

(&) (x + a)(x + b)(x + c)'

(c) (x + h)^-x^.

(d) (m + w) n — (m — n)m.

(e) (a + &)2-(a-6)2.

(/) (a + 6)3 -(a -6)3.

2. Factor:

(a) x^-W.
(&) (2a-by-9(x-iy^.
(c) ax — bx + ay — by.

(d) x*- 6x^ + 9.

(e) x2 + 6x + 6.

(;i) 25x* + 10a;3 + x^.

3. Factor:

(a) 4a2_5« + i.

(6) a2 + 2a6 + 62_a;2.

(c) a9-64a3_a6 + 64.

((^) 1 + x2 + xK

(e) x3 -3a;2 + 2a;.

(/;2 + 7x-15x2.
(Sr) x8 + 1.

(/i) a:4?/2 _ 17 x'^y - 110.

46. Operations with Fractions. These depend chiefly on

the simple principle that the numerator and the denominator

of a fraction may be multiplied by the same number (not zero)

without changing the value of the fraction, and the reverse of

this principle, viz. that any common factor (not zero) of the

numerator and the denominator of a fraction may be removed

without changing the value of the fraction.*

By means of this rule any two or more fractions can be re-

duced to the same denominator. The rules for adding and

multiplying fractional expressions are stated symbolically as

follows

:

a

b+r b

c

a

b xr
ac

'bd

a

b~
na

''nb

* This principle is a direct consequence of the definition of division. Can
you explain it ?
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a

b+r
ad-\- be

bd

a

b_ a

"b

d
• — —

c

ad
=—

.

be

d

a

b
= -

— a

b

a

-b

a + &_ -a-b

Also

and

c c

The following exercises will furnish applications of these

principles.

EXERCISES

1. Express as a single fraction :

^^^ M^ + ^T^ + ^T&' ^ ^ c^y a'^ b^^

^ X y z x + y -\-z \n vj\m uj

(c) L^l + L.
(^) 1 + 1_§. ,

St tr rs ^ 2 X y

Simplify the following expressions, assuming that no canceled factors

have the value zero.

a-\-b

2.

X -
-— +
- a {X--aY \x -ay

3.
a -- c h + c

(a-b){c-b) {a-c)(a-b) {b-c){c-a)

Ans.
2«

(a_6)(c-6)

«J=L^ _ 1±A
I
(62 _ an Ans. 4 ab.

a + b a-&P ^

g x^ -y*
^

g-i^ ab + b^

' \a^ b^\ ' \a^ b^
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be ac ab a)
( i _ ^ c

V a + & + c

\a^-^b^)\ b I \b a)

^2 ^. 7y2 q;2 _ ft2

)

10.

11.

aP- - b-^ a' + b-^

a + b

a-b

1

a-b
a + b

^_^x^ 2\x-y x-\-y)

1+-^+
. "".J M-

xy + 4 y'^ x^ + 4:xy y(x + 2 y)

Aiis. a

111 c U (a + 6)^-c° l

I
a + 6|l (a + 6/ j

i + l + i

13. 2_L_2.
£ + « + *

a & c

14 a^ + &'^ ^ ?) \ g^-fe^

a^ + rt6 + ^n a- bl a^-ab + b^'

X^ + -J^\ {X'^ + y^}
X'^ 1/2 '-

15. -^ ^-^ Ans. X* - a;2y2 + y*,
^

I y

x-hy x — y

16. If a, ft, and « are positive, which is the greater,

or
b (b-{-x)

Distinguish two cases a>- b^ a <.b.

17. If ad < eft, then is it true for all values of the letters involved that

a/b < c/d ? Why ?



II, §48] ALGEBRAIC PRINCIPLES 61

47. Identities and Equations. We must recall here a vital

distinction between two kinds of equalities. An equality

which is true for all values of the letters (or other symbols)

involved, for which both members of the equality have a mean-

ing, is called an unconditional equality or an identity. An
equality which may be true for certain values of the letters

involved, but is not true for all, is called a conditional equality

or an equation. For example, the equality a'^— b^=(a— b) (a + b)

is an identity since the two members of the equality represent

the same number for all values of a and b. Also the equality

^3^ =^ + ^

is an identity, even though it becomes meaningless when a = b.

Why ? On the other hand 2^ — 8 = is an equation since

it is true only for x = 4. Va? + 1 = — 1 is also an equation, but

it is not true for any value of x. Why ? *

To solve an equation is to find the values of the letters for

which it is true. Thus in the first example above, a; = 4 is the

solution or root of the equation 2 a? — 8 = 0. The second equa-

tion above has no root.

48. The Relation AB = 0. In the solution of equations

the following principle is of frequent application. If a prod-

uct of expressions each representing a number is zero, we may

conclude that some one of the factors is zero. In the simplest

case this means that if A and B represent expressions and if

A • B = Oy we conclude that either ^1 = or J5 = O.f

* By Va is meant the positive square root of a.

t We must, of course, be careful to assure ourselves that each of the expres-

sions involved represents a number for the values under consideration. Thus

we cannot conclude from the relation x • (l/x) = 0, that either a = or 1/x = 0,

for when a; = 0, l/x is meaningless. In fact the given relation is impossible;

the equality is not true for any value of x.
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We may apply this principle to show the absurdity of some

mistakes that are often made by the careless student. For

example, a favorite mistake is to " cancel " the x in the expres-

sion

a-\-x

This would be justified if the equality

a\ a + x ^a
^^ b+x b

were an identity. If we clear this equality of fractions by

multiplying both members by (b + x) b, we obtain

ba '\- bx = ab -{- ax,

or

bx = ax;

or, finally,

(b-a)x = 0.

Hence we conclude that equality (4) cannot be true, unless

either 6 = a, or ic = 0. The " canceling operation " mentioned

above is therefore unjustified.

EXERCISES

1. Treat similarly the following equalities to determine under what

conditions they are true. Each one is related to an error that is some-

times made.

(a) Is Va2 + 6'-^ = a + 6 ? (Square both sides.)

^ ^ b d b-\-d

^ ^ 2c + d c + d

(d) Is (x + 2/)2 = x2 + y2 ?

(e) Given x^ = 2x. Are we justified in concluding that x = 2 ?
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2. In each of the following equalities, assuming that the letters repre-

sent real numbers, determine which are identities and which are equations.

Among the latter, distinguish those that are not true for any (real) values

of the letters involved ; and for the others determine in their simplest

form the conditions which they imply on the letters involved.

(a) a;*-y4=(x + 2/)(x-y)(x2+|/2).

(6) x'^-Sx + 2 = 0.

(c) x+- = 0.

X

(d) ac — he + ad — bd = 0.

3. Find and discuss the error in the following reasoning :

Let X = 2. Then a;2 = 2 x, and x^ — 4 = 2x — 4. This is equivalent to

(a;+2)(x-2) =2(:b-2).

Dividing both sides by x — 2, we get

cc + 2 = 2.

But X = 2 ; hence

2 + 2 = 2

or

4 = 2.

4. Find and discuss the error in the following reasoning : Let a and b

represent two numbers. Then

a2 _ 2 a6 + 62 =6-2 _ 2 a& + a%

or

(a-.6)2=(6_a)2,
or

a — b = b— a;

hence

a = 6.



PART II. ELEMENTARY FUNCTIONS

CHAPTER III

THE LINEAR FUNCTION. THE STRAIGHT LINE

49. A Linear Function. Distance traversed at uniform speed.

Example. A railroad train starts 10 miles east of Buffalo

and travels east at the rate of 30 miles per hour. How far

from Buffalo is the train at the end of x hours ?

In oc hours the train travels 30 x miles. If its distance from

Buffalo is denoted by y, we have 2/ = 30 a; + 10. Pairs of values

of X and y obtained from this equation are shown in the fol-

lowing table.

X 1 2 3 4 etc.

y 10 40 70 100 130 etc.

Geometric Eepresentation. Let us plot as points in a

plane these corresponding values of x and y. We then obtain

the first of the following figures (Fig. 29). It will be noticed

Y Y Y

I '• 3 4X i i ^ ^X 12 3 4

Fig. 29

64
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that the five points appear to lie on a straight line. We have,

for intermediate values of x, the values of y shown in the fol-

lowing table.

X i ^ 2i H
y . 25 55 85 115

Plotting these points we obtain the second of the above figures,

in which the nine points appear to lie on a straight line. Let

us calculate the value of y for some more intermediate values

of X thus :

X JL
4 f i i

y m ?>2i 47i 62^

In the third figure we see that these new points still appear to

lie on the same straight line.

These considerations suggest that if we could calculate the

values of y corresponding to all the values of x between x =
and a? = 4, the points whose coordinates

are {x, y) would all lie on a straight

line joining the points (0, 10) and

(4, 130), and would constitute the

whole of this line-segment. A proof

that this is the case is as follows : In

Fig. 30 we have drawn the straight

line joining the points A (0, 10) and

B (4, 130). Let (x^, y^)(x, > 0) be any

pair of corresponding values of x and y for the function

2/ = 30 ic + 10 ; we then have

(1) 2/1 = 30 0^1+10.

. ,,,

120 -^
- J- «!

i^
80 - Al
60--'- :::^ :n

^'^ Jz t^
40 - ^ ^ 1 ^

/^ II
20 ^ til- '

A 4 - yj, ^^ i-iS-i-^-SElL
1 2 M^ *

Fig. 30
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We now wish to prove that the point P (a^i, y{) is on this

line AB.* To do this we construct the triangles APQ and

ABC by drawing lines through A, P, and B parallel to the

axes. If P is on the line JLB, then these triangles are similar,

and if P is not on the line AB, then the triangles are not similar.

Why? If the triangles are similar, QP/CB = AQ/AC; and

conversely, if QP/CB = AQ/AC, the two triangles are similar.

Expressed in terms of the coordinates of A, By and P, this pro-

portion becomes (see figure)

120 4 '

or ^\i~''

3/1-10 -120^3^
Xi 4

But from (1) we have y^ — 10 = 30 Xi and hence

^-Zi? = 30.
Xi

This proves that every point whose coordinates {x^, y-^ satisfy

the relation 2/ = 30 a; + 10 is on the straight line AB.

Conversely, every point on the straight lineAB has coordinates

{xij yi) which satisfy the relation y = SO x -\- 10.

For, from the figure, we have

yi-10 ^120
Xi 4

whence
yi=S0x^-\-10.

* Extended beyond B, if Xi > 4.

** Observe that QP and CB are measured in different units from AQ and

AC. But the ratio of two line-segments is independent of the unit in which

they are measured.
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The straight line AB (extended indefinitely beyond B) then

gives a complete representation of the function 30 a; + 10, at

least for positive values of x (negative values of x have no

meaning in this problem). Every pair of corresponding values

of X and y gives rise to a point on AB, and eveiy point of AB
has coordinates which are corresponding values of x and y. By
virtue of this fact the line xiB is called the graph of the function

30 a; 4- 10, or the locus of the equation y = 30 x -{- 10 referred to

rectangular coordinates ; Avhereas the equation ?/ = 30 a; + 10 is

called the equation of the line AB.

Uses of the Graph. The graph just discussed exhibits

vividly to the eye several properties of the function 30 a; 4- 10.

(1) The function steadily increases as x increases. This

corresponds to the fact that the longer the train moves east-

ward, the greater is its distance from Buffalo.

(2) Corresponding to every positive value of a;, there is a

unique value of y. From the graph find y when x is 4.

(3) Corresponding to every positive value of y (greater than

10) there is a unique value of x. What is the value of x when

.vis 160?

(4) The last consideration means that x is also a function of

y. Explicitly we have

y = 30 a; + 10,

whence

2/ - 10 = 30 a;

and

x=.y^^.
30

•It is left as an exercise to draw the graph of the function

y-10
^='"^0~

by assigning values to y and computing the corresponding

values of x. Compare the result with the graph in Fig. 30.
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Rate of Change of a Functiox. Before leaving this special

case to consider a more general problem, we shall use it to illus-

trate a very important conception connected with a function.

We have noted that when a; = 0, y = 10. Starting from this

initial value, as x increases from the value 0, the value of the

function, i.e. _?/, changes (in this case increases). It is often of

the greatest importance to know how the increase in the func-

tion y is related to the increase in x. As x increases from

to 1, y increases from 10 to 40 ; i.e. a change in x of one unit

produces a change in ?/ of 40 — 10 or 30 units. The relative

change is then -^^2^, or 30. As x increases from x = to x = 2, y

changes from y z= 10 to y= 70, or by 60 units, and the relative

change is again 30.

Let us see what the situation is in general. Let Xi be any

particular value of x and yi the corresponding value of y ; then

suppose that Xo is any other (subsequent) value of x and ?/2 the

corresponding value of ?/. The change in x is evidently X2 — Xi

and the corresponding change in y is y2 — 2/1- We seek the

value of the ratio

X^-Xi

We have from the data of the problem

2/2 = 30 X2 + 10

and
y^ = 30 a^i -h 10.

Subtracting we get

2/2-2/1 = 30(^2 -aJi)

and hence

^2-3/1^30,
0^2 — a?!

We see then that the ratio of a change in the function 30 a;+10

to the corresponding change in x is constant and is equal to
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the speed of the train. We shall see presently that in any

function of the first degree in x, the ratio of a change in the

function to the corresponding change

in X is constant.

Geometrically this result expresses

the familiar proportionality of homol-

ogous sides of similar triangles. By
reference to Fig. 31 we may readily

verify that the terms 2/2 — 2/i ^^^^ ^2 — ^1

represent the vertical and the hori-

zontal sides of a right triangle whose

hypotenuse is on the line AB. The fact that the ratio

(2/2 — 2/i)/(^2 — ^1) is constant, i.e. always equal to 30, simply

corresponds to the obvious fact that any two such triangles,

no matter at what place they are drawn, or how long their

sides are taken, are similar.

\ l^'IV
inn

~ A t"
^^ V

^-- iyfr T^
eo

~" ,> 1:1 1 1 \\r\ 1bU ^^
I ISI

40 -P -.^4^ :
20-i'^V Xn- = •^1--- + --

+

^ 2 3 i

Fig. 31

50. Change Ratio. The ratio

X2 — X1

is called the change ratio (or sometimes the difference ratio) of

the function. The difference X2 — x^ is often denoted by Ace, and

the corresponding difference y^ — 2/1 by Ai/.* The change

ratio may then be written A?//Aiw. Explicitly, by definition,

we have the following equalities

:

change ratio =^ = fclli^ = change in y .

Ajt X2 —Xi corresponding change m x

The preceding considerations suggest the theorem :

* A is a Greek capital letter corresponding to our D and called delta ; it is

used because d is the initial of the word ** difference." " Ax," is then merely

an abbreviation for "difference of the x's " or '* change in z " and " Ay " for

" difference of the y's " or " change in y."
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If the change ratio of a function is constant, the graph of the

function is a straight line; and conversely.

The truth of this theorem is already sufficiently indicated in

case 2/2
— Vi ^^d ^2 — ^1 3.re both positive numbers. In formu-

lating a general proof we must keep in mind that y^ — 2/1 ^^d

X2 — Xi may be either positive or negative and that these dif-

ferences represent directed segments. The proof of the theorem

in general will appear presently.

EXERCISES

1. Discuss fully the graph of the function y = 2 a; + 3. Prove that the

graph is a straight line. Express x as a function of y. Find the change

ratio and show that it is constant.

2. Proceed as in Ex. 1 for each of the functions :

(a) 5x4-2, {h)x+\2, (c) 3.2a: + 8.4.

3. Prove that the change ratio for the function y = mx + 6 is m.

4. A steamer 150 miles east of Toledo starts to travel west at a uniform

rate of 15 miles per hour. Express its distance y east of Toledo at the end

of X hours. Draw the graph of the function and prove that it is a straight

line. Does the distance y increase as x increases ? Calculate the change

ratio and show that It is constant. What is the significance of the

negative sign ? At what time is the steamer 10 miles east of Toledo ?

When does it reach Toledo ? How are the last two results shown in the

graph ? What is the significance of the graph that extends below the x-axis ?

5. Give examples, drawn from your experience, of functions which

(a) increase as the variable increases
;

(6) decrease as the variable decreases.

6. Consider the function y = x^. Calculate the corresponding values

of y when a; = 0, 1, 2, 3, 4, 5. Plot the corresponding points and observe

that they are not on a straight line. Calculate the change ratio of this

function for x = and Ax = 1, 2, 3, and observe that it is not constant.

7. The cost of printing certain circulars is computed according to the

following rule. The cost for the first one hundred circulars is $ 2 and

for each succeeding one hundred $0.50. Express the cost y in dollars of

X hundred circulars. Draw the graph of the function and determine

from the graph the cost of printing 475 circulars. What does the change

ratio of the function y express in this case ? Ans. y = ^ x + f

.
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51. The General Linear Function mx -h b. The change ratio

of every function of the form mx + b is constant.

Proof. Let (x^
, yi) and (ajg

, 2/2) be any two pairs of cor-

responding values. Then

2/1 = w^i + & and 2/2 = mx2 -\- h
;

hence , ^

2/2 - .Vi = m (icg - xi),

I.e.

Conversely, if the change ratio of the function y of x is con-

stant and equal to m, the function has the form y = mx + b.

Let (xi, 2/1) be a particular pair of corresponding values and

(x, y) any other pair of corresponding values. By hypothesis

the change ratio is equal to m ; i.e.

X — Xi

or
y = mx — mxi -f 2/1

;

but — mxi 4- 2/1 is a constant, say b. Hence

y = mx -h b.

Hookers law affords an excellent illustration of the above theorem.

This law states that the length 1/ of a piece of wire under tension is equal

to its original length 6, plus the stretch, which is proportional to the force

X causing it. Thus, y z=l h + mx.

This law may also be stated simply by saying that the change ratio of

the length y^ with respect to the pull a:, is constant.

The preceding considerations lead to the following theorem.

Theorem. If a function y of a variable x is such that any

change in the value of the function is always equal to m times the

corresponding change in the variable, the function y is given by

a relatian of the form y — mx -f- b, and, conversely, in any func-

tion of this form any change in y is always m times the corre-

sponding change in x.
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52. The Graph of a Linear Function. Let Pi{xi , y^) be any

point on the graph of a linear function (Fig. 32). From Pj draw

to the right a positive horizontal segment P1Q2 equal in length

to X2 — Xi , i.e. Ax. Through Q2 draw a vertical segment and let

it meet the graph in the point Po • The segment Q2P2 is equal

to 2/2 — yi? i'^- ^y, and is positive if P2 is above Pi (Fig. 32 a)

}'
. __

Pz

Pi Q% Qs

la)
X

Fig. 32

Pi Q2 Qb

A
A

(6)

and negative if P2 is below Pi (Fig. 32 6). Now let us take

another positive change Ax = x^ — Xi, represented by P] Q.^ and

the corresponding change Ay — y^ — 2/1 represented by Q3P3

.

If the change ratio is constant, then (1) either Pg and P3 are

both above Pi or they are both below Pj , according as the given

constant is positive or negative; and (2) the triangles P1Q2P2

and P1Q3P3 are similar. Therefore the points P1P2P3 are on a

straight line, if and only if the change ratio is constant.

Theorem. The graph of any function of the form y = mx -f- b

is a straight line.

To draw the graph of such a function we need, therefore,

merely to plot two points of the graph and draw the straight

line through them.*

* While two points are sufficient to determine the line completely, it is

desirable to find a third point as a cheek on the other two. Moreover, it is

advisable to take the points as far apart as convenient. Why ?
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Y

C

n

By^ D

,^
1

y IM 2 X
Fig. 33

In the figure this ratio

Example. Draw the graph y = ^x -\- 2. We notice that (0, 2) and

(4, 14) are two points on the graph. The line joining these two points is

the required line. Check by plotting a third point.

53. The Slope of a Straight Line. The graph of the func-

tion y = mx + b may be obtained by observing that x = Oj

y -^b and x = 1, y = m -\- b are

two pairs of corresponding values

of X and y. In the adjoining

figure (Fig. 33) we have plotted

the two points B (.0, b) and

0(1, m + b) on the assumption

that both of the quantities b and

m are positive numbers. The

change ratio, as we have seen, is m.

is DC/BD.
Now suppose that b remains constant and that m takes on

successively different values. Under the hypothesis that b

and BD remain fixed, the points B and D would remain fixed

and the point C would move up or down on the vertical line

through D, according as m increases or decreases. The line

BG would then rotate about the point B, becoming steeper if

m is increased and less steep if m is decreased. The change

ratio m then measures the steepness of the line. The term

change ratio applies to the function mx -\- b ; when applied to

the straight line y = nix -f 6, it is called the slope of the

straight line.

54. Remarks Concerning the Slope of a Line. We as-

sumed in the last section that both b and m were positive

numbers. Let us now suppose that b is still positive, but that

m is negative. Observe that in the preceding figure MC
= MD + DC = b-\-m. Eecalling that the relation MC= MD
+ DC holds universally for any three points M, D, C, on a
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line (Art. 35), the interpretation of a negative m, i.e. DC, is

that the point C is below, the point D. (Cf. also § 52.) A
negative value of m then merely causes the line to slope

downward in going from left to right, while, as we have seen, a

line with a positive m slopes upward. When m = 0, the line

is parallel to the a^-axis. Indeed the equation y = mx + h be-

comes, for the value m = 0, the equation y = h. This equation,

when interpreted as a function of x, means that for every value

of X, the value of ?/ is h \ the graph of such a function is ob-

viously a straight line parallel to the avaxis. Since a change

in X in this case produces no change in y, the change ratio is

zero. Finally, if h is negative, nothing is changed except that

the point B is below the origin 0. A positive m still indicates

an upward slope and a negative m a downward slope, in pass-

ing from left to right.

The number h, we have seen, represents the segment from

the origin to the point in which the line cuts the y-axis. This

segment is called the y-intercept of the line. Similarly, the

segment from the origin to the point in which the line cuts the

ic-axis is called the x-intercept of the line.

We have then the following results :

Tlie straight line represented by the equation y = mx + b has a

slope equal to m a7id a y-intercept equal to b. In passing from left

to right, the straight line slopes downward ifm is negative and up-

ward ifm is positive; if m is zero, the line is parallel to the x-axis.

In the terminology of functions we have

:

The linear function mx -f- b is an increasing function of x {i.e.

the function increases as x increases) if the charige ratio m is pos-

itive, and a decreasing function of x (i.e. the function decreases

as x increases) if m is negative. It is a constant function ifm
is zero.
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55. Examples of Linear Functions. Example l. On a Fah-

renheit thermometer the freezing point of water is placed at 32°, the boil-

ing point at 212°. On a Centigrade thermometer the freezing point is

at 0°, the boiling point at 100^. Express the temperature of y° Fahren-

heit as a function of y° Centigrade.

Solution : y = 32 when a; = 0. Also the range of temperature from

the freezing point to the boiling point of water is 212°-32° or 180° F. while

it is 100° C. Therefore it follows that an increase of 1° C. is equivalent

to an increase of | of a degree F. Now as the temperature increases from
0° to ic° C. the change in the number of degrees is x. This change in

temperature is equivalent to an increase from 32° to y° F. The change

in the number of degrees is then

?/-32i=|x, or y =|x + 32.

As a check we may observe that, when x = 100, the formula gives y = 212,

as it should. Are negative values of x admissible ? Figure 34 represents

the graph of this function. It was drawn by using the points A (-30, -22),

B (100, 212). [Why is it desirable to choose points so far apart?]

This "graph may be used to read off without computation the approximate

temperature in F. for a given temperature in C. For example, to x = 22

corresponds y = 72, approximately. Therefore 22° C. is equivalent to

about 72° F. By computation we find that y = ll.Q.

1
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Example 2. A bar of iron 3 ft. long at 60"^ F. will expand or con-

tract if tlie temperature increases or decreases. The increase in length is

proportional to the increase in temperature (physical law). More pre-

cisely, an increase of 1° F. produces an increase of 0.0000027 ft. In this

case we have m = 0.0000027. If y represents the length at x° F., we have

?/ = 3 + m(x-60).

Does this relation hold also when x < 60 ? Why ? Can you draw the

graph ?

We shall now give an example in which m is negative.

Example 3, An aeroplane starts 200 miles eas^of Chicago and travels

towards Chicago. Express its distance y from Chicago in miles at the

end of t hours, if the aeroplane moves at the rate of 82 miles per hour.

Solution : According to the data the distance from Chicago is de-

creasing at the rate of 82 miles per hour, i.e. m =— 82. Therefore,

y-2Q0=-82t, or y = -S2 t -\- 200.

Draw the graph. What is the significance of a negative y (e.g. when
^ = 5)? When does the aeroplane reach Chicago ? When is it at a point

63 miles east of Chicago ? When is it 52 miles west of Chicago ? How
could these questions be answered from the graph alone ?

EXERCISES

1. On a Reaumur thermometer the freezing point of water is at 0°,

the boiling point at 80°. Express the temperature in degrees Fahrenheit

in terms of the temperature in degrees Reaumur. Draw the graph and

show how it may be used.

2. Is there any temperature whose measures in the Fahrenheit and in

the Centigrade scales are equal ? Answer by computation. How could

the result be found graphically ?

3. A cistern that already contains 300 gallons of water is filled at the

rate of 50 gallons per hour. Show that the amount of water y in this cis-

tern at the end of x hours is y = 50 x -}- 300. Draw the graph and discuss.

How would the function be changed, if the cistern were being emptied

at the rate of 50 gallons per hour ?

4. A tank contains 16 gallons of water. A faucet is opened which

admits 4 gallons per minute. Express the amount, w, of water in the

tank at the end of t minutes. Draw the graph. Do negative values of t

have any significance ? When will the tank contain 37 gallons ?
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5. A tank containing 37 gallons of gasolene is emptied at the rate of

5 gallons per minute. Express the amount of gasolene in the tank at the

end of t minutes. Draw the graph. When will the tank be emptied ?

For what range of values of t has the function any significance ?

6. On a certain date a man has 1 5 in the bank. At the end of every

week he deposits $3. How much money has he in the bank at the end

of X weeks ? Draw the graph of this function. How is the rate of in-

crease shown in the graph ?

7. On a certain day a man has 1 100 in the bank. At the end of

every week he draws out '$5. How much money has he in the bank at

the end of x weeks ? Draw the graph of this function. How is the rate

of decrease shown in the graph ?

8. In experiments with a pulley, the pull P in jjounds required to lift

a load L in pounds, was found to be P = 0.15 L + 2. Plot this relation.

How much is P when L is zero. How much is P when L is 10 lbs.?

9. If h represents the height in meters above sea level, and h the

reading of a barometer in millimeters, it is known that b — k { hm, where

k and m are constants. At a height of 110 meters above sea level the

barometer reads 750 ; at a height of 770 meters it reads 695. What
equation gives the relation between b and Ji ? Draw the graph of this

equation and from the graph determine h when b = 680.

56. Linear Interpolation. The fact that the change Ay in a

linear function y is proportional to the change Aa; in the variable

X makes it possible to interpolate readily. For example, if we

know that ?/ is a linear function of x, and that y = 432.50 when

X = 32.0 and that y — 436.90 when x = 33.0, we can calculate

mentally the value of y when x = 32.3. For we know that in

this case Ay = 4.40 when Ax = 1.0 ;
hence A?/ = 4.4 x 0.3 = 1.32

when Ail' = 0.3. Hence y is 433.82 when x = 32.3. This pro-

cess is known as linear interpolation. Why would this process

not apply directly to functions that are not linear ?

EXERCISES

Assuming that y is a linear function in each of the following cases

compute the values of y indicated.

1. When a; = 10, ?/ = 50; when x = 14, y = 90; when a; = 11, y = ?

2. When x = 2.4, ?/ = 9.8 ; when x = 2.5, y = 8.Q; when x = 2.42, y=?
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57. Graphic Solution of Problems. Whenever we know
at the outset that the solution of a problem is going to depend

on the consideration of one or more linear functions, we can

often solve the problem graphically without determining these

linear functions analytically. Such a method is advantageous

whenever the computation is difficult or tedious and when
great accuracy is unnecessary. In order to decide whether

the functions involved are linear or not, we usually have re-

course to the theorem (§ 51) that, whenever the change in

the function is proportional to the change in the variable, the

function is linear. This is true, for example, in all cases of

motion at a constant speed on either a straight or curved

path ; the distance is then a linear function of the time.

The following example will serve to illustrate the graphic

method of solution.

Example. At 7 a.m. a man starts to go up the 7-mile carriage road

of Mt. Washington. At 9 o'clock he passes a party of ladies coming
down. He reaches the top at 10 o'clock and, finding no view, he immedi-
ately sets out on the return trip, which takes 1 f hrs. As he reaches the

hotel from which he started he notices the party of ladies just arriving.

At about what time did the ladies leave the top, assuming that the man
kept up an approximately constant rate of speed on the way up and the

ladles on the way down ?

To solve the problem,we represent on a horizontal axis the time, mark-
ing the hours 7, 8, 9, 10, 11, 12 and on the vertical axis the distances

from the hotel at the foot of the
t>m—I I

'

I—I.I I I I I

mountam. The graph' of the man
going up the mountain is a straight

line starting at O (at 7 a.m. he was
at the hotel) and ending at a point

A representing 10 o'clock and 7

miles from the hotel. Regarding

the ladies, we know that the graph

of their descent is also a straight

line. At 9 o'clock they were the

same distance from the hotel as

the man. The point B on the line OA, corresponding to 9 o'clock,

/> A
N /\

>v /
> iP

/

/ \
/ \
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Fig. 35
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is then one point of the ladies' graph. Another point is the point C
at distance from the liotel at n:45. The line BC is then drawn
and extended to Z>, representing 7 miles distance from the hotel. It is

seen that the ladies started at about 7:30. How far was the man
from the top when he met the ladies ?

58. Sum of Two or More Functions. Let mix -h h^
,

m^x-\-h2 , '", m^x -f- 6^ be any k linear functions of x. The sum

of these functions is (miX + 6]) -\-{m2X -[- 62)+ ••• H-(^fc» + &*)

and this is equal to

(mi+W2-f ••• +mj)x+{hi 4-62H h &jk)>

which is again of the form mx + h. The result may be stated

as follows : The sum of any number of linear functions of x is

itself a linear function of x.

Example. An empty tank is being filled by a faucet supplying 2

gallons of water per minute. After this faucet has been running 5

minutes a second faucet is turned on which supplies water at the rate of

3 gallons per minute. When the two faucets have been running to-

gether for 6 minutes, an outlet is opened, but both faucets continue to

Fig. 36

run. If the tank is empty at the end of 32 minutes, counted from the

start, draw a graph representing the amount of water in the tank at any

instant. Find approximately the rate of flow from the outlet, which may
here be considered constant.
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We shall represent minutes on the horizontal scale and gallons of water

in the tank on the vertical scale. The increase of water due to each

faucet is at a constant rate, and the decrease when the outlet is opened is

also at a constant rate. The amount of water in the tank due to each

cause separately is, therefore, a linear function of the time, and their

algebraic sum is also a linear function of the time. The first faucet begins

at < = (when w, the amount of water in tank, is 0) to supply water at

a uniform rate which would supply 40 gallons in 20 minutes. The

amount of water in the tank due to the first faucet almie would then be

represented at any instant by the straight line OA joining the points

O (0, 0) to A (20, 40). The second faucet begins when t = 5 to

supply water at the rate of 30 gallons in 10 minutes. If this second

faucet were operating alone, the water supplied by it at a given instant

would be represented by the straight line joining B (5, 0) to C (15,

30). In the actual problem from the instant i? = 5, the two faucets are

running simultaneously. The sum of the two functions is then rep-

resented by the line-segment DE, where Z> = (5, 10) and £' = (10, 20+ 15)

= ( 10, 35). This line may be obtained graphically from the figure. When
t = 11, a new factor enters, which reduces the amount of water in the

tank to zero at i = 32. You may now finish the discussion. The required

graph is the broken line ODHI. What would be the effect on the graph

if one or both faucets were turned off at < = 20, the outlet remaining open ?

EXERCISES

1. A man on horseback rides from a place J. to a place 5, 15 miles

distant, in 2 hours. When he is 4 miles from A, he passes a lady walk-

ing in the same direction. The man remains at B \ hour and then

returns to A on foot. After walking 1 hour, he meets the lady on her

way to B. If the man walks at the rate of 3 miles per hour, find the

rate at which the lady is walking and at what time she left A.

2. A man starts at A to walk through B to a place C. At the same

time a second man starts to walk from B to C. The first man reaches

B in 1^ hours, while the second man has only walked f as far in this

time. In how many hours will the first man overtake the second ?

3. Represent graphically on the same drawing the motion of the hour

and the minute hand of a clock and use the drawing to determine ap-

proximately at what time the two hands are in the same position.

[Hint: The hands are together at twelve. Lay off the hours from 12

(or, 0) to 12 on the horizontal axis and the angles in degrees that either
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hand makes with the 12 o'clock position on the vertical axis. Each liand

moves at a constant angular speed. The graph of the hour hand is then

a straight line joining the points

(0, 0), (12, 360). The minute hand

goes from to 360 in 1 hour. The

graph during the first hour is then a

straight line joining (0, 0) to (1, 360).

At 1 o'clock the graph begins at

(1, 0) and goes to (2, 360) and so on.]

4. At what time between five and

six o'clock are the hands of a watch

together ?

5. At what time between two and three o'clock are the hands of a

watch opposite to each other ? At right angles ?

6. At what time between four and five o'clock are the hands of a

clock at right angles ? (Two solutions.)

7. A and B start to walk towards each other from two towns 15

miles apart. A walks at the rate of 3 miles per hour but rests one hour

at the end of the first 6 miles. B walks 4 miles per hour but rests two

hours at the end of the first 4 miles. In how many hours do the two men
meet ?

8. Two men can do a certain piece of work in 12 and 15 days re-

spectively. After the first man has worked 3 days alone, the two men
finish the work. How long do they work together ? Ans. 5 days.

9. A messenger boy riding a bicycle at the rate of 9 miles per hour

is sent to overtake a man on horseback riding 6 miles per hour. How
long will it take the boy to overtake the man if the man had a start of

4 miles ?

59. Explicit and Implicit Functions. We have hitherto

considered functions which were defined explicitly by an

expression involving the variable. Thus the relation between

y° Fahrenheit and x° Centigrade was expressed by the relation

Now let us consider the equation 2x — Sy-{-7 = 0. This

equation also defines a functional relation between two vari-
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ables. To every value of x corresponds a definite value of 2/,

and, conversely, to every value of y corresponds a definite

value of X. But, the equation does not express one of the

variables explicitly as a function of the other. In fact the

form of the equation gives no indication which of the variables

is to be considered as the independent variable and which as

the function. Such a relation is said to define a function

implicitly.

From such an implicit relation we can derive the expression

of either variable as an explicit function of the other. Thus

from 2iB— 32/-f7 = follows at once

2/ = l^+i and x=:f2/-f

The first of these equations expresses y as an explicit function

of X, and the second expresses x as an explicit function of y.

60. The General Equation i4x -h 5y + C = 0. Any linear

relation between two variables x and y can be written in the

form

(1) Ax^-By-\-C^Qf.

For example, the relation just discussed in the preceding arti-

cle is obtained from this general relation by placing ^ = 2,

5 = — 3, (7=7. Equation (1) always defines ?/ as a linear

function of x^ except when 5 = 0. In this case the term in-

volving y drops out and the equation reduces to Ax + C = 0,

and we cannot speak of 2/ as a function of x.

But, if 5 :^ 0, we have By = —Ax—C^ or

A C
y =— ^—

J

^ B B'

which is of the form y = mx -f h. Hence we conclude :

Any equation of the form Ax + By -\- C =0 defines y as a

lineal' function of x for all values of A, B, C except B = 0.



Ill, § 61] LINEAR FUNCTIONS 83

61. The General Equation of the Straight Line. It follows

from the result of the last section, that the locus of the equa-

tion

when interpreted geometrically in rectangular coordinates, is

a straight line, except perhaps when B = 0, when the equa-

tion takes the form Ax -\- C = 0. In this case, if A = also, the

equation reduces to (7 = 0, and it completely disappears. If A
is not zero, we may solve the equation for x and obtain,

G
. = --,

or

« = a constant.

Now, the locus of a point whose abscissa is constant is a line

parallel to the ?/-axis and at a distance equal to the constant

from it. Thus the locus of a; = — 3 is a line parallel to the

y-Sixis, and three units to the left of it.

The case JB = is not then an exception, and we have the

following theorem.

Every equation of the form Ax \- By -\- C = 0, when repre-

sented geometrically by means of rectangular coordinates, repre-

sents a straight line. If B = 0, the line is parallel to the y-axis ;

1/^ = 0, the line is parallel to the x-axis; if (7=0, the line passes

through the origin.

Prove the last two statements of this theorem.

We may also state the following theorems.

Every straight line in the plane may he represented by an equa-

tion of the form Ax -j- By -\- C = 0.

The loci of Axi-By-{- C=0 and k (Ax -\- By -\- C) =
(k =^ 0) a?'e identical.

The proofs of these theorems are left as exercises.
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62. Analytic Geometry. We have thus far used the notion

of coordinates to give a geometric interpretation to algebraic

relations. It is possible to reverse the process and use the

connection established between algebra and geometr}^, for the

study of geometry. This method of studying geometry by

algebraic means is called analytic geometry. In the following

sections we proceed to develop certain analytic methods

applicable to the straight line. The results are, in a large

measure, merely a restatement from a different point of view

of the results already obtained.

63. Straight Lines. We have already seen that the graphs

of equations Ax -\- By -\- C = and y = mx + & (§ 52), when

represented by means of rectangular coordinates, are straight

lines. In § 60 we saw that the first of these equations could

be put in the form of the second, provided 'B ^ 0. Thus when

an equation of the form Ax -{- By -\- C= is solved for y, the

coefficient of x is the slope, and the constant term is the y-intercept.

The slope of the line connecting the two points Pi(iCi, 2/i),

A(aJ2,2/2) is (§§51-53)

We see geometrically that a line is determined when we

know its slope and a point on the line. To determine the

equation of this line, if {x^, y^) is the given point and m the

given slope, we proceed as follows. Let {x, y) be any variable

point on the line. Then, equating slopes, we have

X — Xi

that is,

y-y,= m{x- X,)

is the required equation.
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It is left as an exercise to prove that the equation of the

straight line through the two given points (x^, y^), (ajg, 2/2) is

if Xi =^ X2.

2/-yi = ^'_^' (^-^i)>

64. Parallel Lines. In Fig. 37 let (1) and (2) be two

parallel lines with slopes mi and mg. Construct the positive

segments PiQi and P2Q2 from the points P^ and P2 on lines (1)

Fig. 37

and (2) respectively, and complete the right triangles P^QiRi

and P2Q2R2' We then have

m ,
= ^1^ and m2 = ^'^'

If the lines are parallel, QiRi and Q2R2 are either both positive

or both negative ; m^ and mg have then the same sign. They

have the same magnitude since the triangles P^QiRi and

P2Q2R2 are similar. Hence,

If two lines are parallel, their slopes are equal, i.e. m^ = mj.

Conversely, if the slopes of two lines are equal, the lines are

parallel.

The proof of this statement is left as an exercise.
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65. Perpendicular Lines. In

Fig. 38 let (1) and (2) be two

perpendicular lines with slopes

mi and rriz and let the units on the

two axes be equal. From the

intersection P of the two lines

construct the positive horizontal

segment PQ of any convenient

length. Through Q draw the

We then have

m, =̂Ma„dm, = «^
PQ PQ

Therefore the slopes have opposite signs. Why ? Also from

the right triangle R.R^P we have P^ =
|

QE^
\

•
|

QR2 1. There-

fore * mim2 = — 1 and

m, =-

That is, if the units on the coordinate axes are equal
,
perpendicu-

lar lines have slopes ivhich are negative reciprocals of each other.

Conversely, if the slopes of two lines are negative reciprocals of

each othery the lines are perpendicular, provided the units on the

coordinate axes are equal. The proof of this statement is left

as an exercise. Why is it necessary to assume the units equal ?

66. Illustrative Examples. Example 1. Find the equa-

tion of the straight line through the point (4, 7) and having

the slope — 2.

* This proof presupposes that neither mj nor mg is zero, i.e. the lines are

not parallel to the coordinate axes, and the result obtained does not apply to

such lines. However, two lines parallel to the x- and y- axes have equa-

tions of the form y = a constant and a; = a constant, respectively, and henco

can be recognized at once.
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We have at once from § 63, ?/ — 7= — 2 (ic — 4)

or

2 a; -f 2/
- 15 = 0.

Example 2. Find the equation of the straight line through

the points P^{2, 4), P^{- 5, 6).

rru 1
6-4 2

The slope m = -—-—- =— 5—2 7

From § 63 the equation of the line is y ~ 4:= — ^ (x — 2) ov

7y + 2a;-32 = 0.

Example 3. Express the temperature measured by y° Fah-

renheit as a function of fl;° Centigrade.

We know that when y = 32, x = 0: i.e. Pi(0, 32) is a point

on the graph. In the same way we have PaC^^O, 212) a point

of the graph. Therefore the equation of the line connecting

these points is

' 212-32 ^ y-32
100 - a; -

or

2/ = 9 a; + 32 (See § 55, Example 1.)

Example 4. Find the equation of the straight line

through the point (2,-5) and parallel to the line 2 y + 4 ic — 5

= 0.

The slope of the given line is — 2 (§ 63). Therefore

the equation of the required line is y-{-5= — 2(x — 2) or

2a; + 2/ + 1 = 0.

Example 5. Find the equation of the straight line through

the point (1, — 2) and perpendicular to the line 3x — y -\-2 = 0.

The slope of the given line is 3. Therefore the slope of

the required line is — ^ (§ 65). The equation of the required

line is2/-f2 = — i(a; — l)ora;-f32/4-5 = 0.



88 MATHEMATICAL ANALYSIS [III, § 66

EXERCISES

1. What is the meaning of the constants m and h in the equation

y = mx + b?

2. What is the effect on the line y = mx + & if 6 is changed while m
remains fixed ? If m changes when b remains fixed ?

3. Describe the effect on the line y — yi = m(x — xi) if m changes

while xu y\ remain fixed : also describe the effect if Xi, yi, vary while m
remains fixed.

4. What is the equation of the line

(a) whose slope is 3 and whose ^-intercept is 2 ; Ans. y = 3 x + 2.

(6) whose slope is 4 and whose y-intercept is — 3
;

(c) whose slope is and whose ^/-intercept is — 1
;

(d) whose slope is and whose y-intercept is ?

5. Describe the positions of lines (c) and (d) in Ex. 4.

6. Define " y-intercept of a line." What is meant by the "x-inter-

cept"?

7. For each of the following lines give x-intercept, y-intercept, and

slope :

(a) 2x-3?/ = 7. ^ns. I; -I; f. (c)2x-y + 5 = 0.

(6) X + y - 2 =: 0. ((?) 4 X + 2/ = 0.

8. Is a straight line determined if we know its intercepts ? Try
each of the equations 2 x — y = 4 and 2 x — y = 0.

9. Find the equation of the line joining the two points (2, 1) and

(—3, 1); of the line joining the points (4, 2) and (4, —3).

10. Which of the following lines are parallel ?

(a) 2 X - 2/
- 4 = 0. (c) 4 X - 2 ?/ - 1 = 0.

(6) y + 2 X + 3 = 0. (d) 2 y + 4 X + 5 = 0.

11. Are the points (1, 5), (- 1, 1), (2, 6) on the line y = 2 x + 3 ?

12. What is the equation of the line which is parallel to y = 2 x + 3

and passes through the origin ? perpendicular to y = 2 x + 3 and passes

through the origin ?

13. Determine k so that

(a) the line 2x + 32/ + A; = shall pass through the point (0, 1) ;

Ans. - 3.

(b) the line 2x-f-3y4-* = shall have a y-intercept equal to 2
;

{c) the line 2x + 3y + ^ = shall have an x-intercept equal to 5.
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14. Find the equations of the sides of the triangle whose vertices are

(3,4), (-1, 2), (-4, -5).
Ans. x-2y + 5 = 0; 9x-ly + l=0- 7x-3i/+13 = 0.

15. Find the equations of the sides of the quadrilateral whose vertices

are (-2,1), (3, -1), (- 2, 4), (1, 7).

16. What intercepts does the line through the points (2, — 7) and

(4, — 5) make on the axes ?

17. Find the equation of the line which passes through the point

(4, — 2) and whose slope is 6.

18. A line has the slope 2 and passes through the point (—1, 2).

What are its intercepts ?

19. What is the equation of the line which passes through (—6, 5) if

its y-intercept is — 3 ? Ans. 8a: + 5?/ + 16 = 0.

20. Write the equations of the lines which make the following inter-

cepts on the X- and !/-axes.

(a) 2 and - 4
;

(b) - 7 and - 3
;

(c) 4 and 5
;
(d) and 0.

21. If the X- and y-intercepts of a line are a and b, prove that the equa-

tion of the line can be written iii the form

a b

[This equation is called the intercept form of the equation of a straight

line.]

22. Solve Ex. 20 by using the result of Ex. 21. Does the formula hold

in Ex. 20, (d) ? Explain.

23. Find the equation of the straight line through the point (4, — 6)

parallel to the line 2x— y-{-7 = 0; through the same point, perpendicu-

lar to the line 2x — y + i = 0. Ans. y = 2x— IS; 2y = — x — Q.

24. Prove that the lines Ax + By -\- C =0 and Ax -{- By + D = are

parallel. State this theorem in words.

25. Prove that the lines Ax -\- By + (7 = and Bx—Ay-^D = are

perpendicular. State this theorem in words.

26. Prove that the lines Ax -\- By + = and Mx -h Ny -\- P = Sive

perpendicular if and only if AM -{ BN = 0.

27. Show that the points (- 8, 0), (-4, - 4), (-4, 4), and (4, - 4)

are the vertices of a trapezoid.

28. The Reaumur thermometer is graduated so that water freezes at 0°

and boils at 80°. Find the equation of the line that represents the read-
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ing B of the Reaumur thermometer as a function of the corresponding

reading C of the Centigrade thennometer.

29. A printer asks 75 cents to set the type for a notice and 3 cents per

copy for printing. The total cost is what function of the number of

copies printed ? Draw the graph of this function.

30. Express the value of a $ 1000 note at 6 % simple interest as a

function of the time in years. Is this a linear function ?

31. A cistern is supplied by a pipe that supplies water at the rate of 30

gallons per hour. Assuming that the amount A of water in the cistern

is connected with the time ^ by a linear relation, find this relation if

^ = 1000 when t = 10. What is A when t = 0?

32. In stretching a wire it is assumed that the elongation e is con-

nected with the tension t by means of a linear relation* Find this rela-

tion if i = 20 lb. when e = 0.1 in. and t = 60 lb. when e = 0.3 in.

67. Systems of Straight Lines. An equation of the first

degree in x and y, and containing an arbitrary constant, repre-

sents in general an infinite number of

straight lines. For the equation will

represent a straight line for each value

of the constant. All the lines repre-

sented by an equation of the first

degree containing an arbitrary con-

stant are said to form a system of

lines. The arbitrary constant is called

the parameter of

the system.
Thus the equa-

tion yz= — 3x-{-b represents the system

of straight lines with slope — 3. (See

Fig. 39.) The equation y — 2 = 7n{x — l)

represents the system of straight lines

through the point (1, 2).* (See Fig. 40.)

* It represents every line of this system except the one parallel to the

y-axis. Why ?

Fig. 39
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Fig. 40
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68. Pencil of Lines. All the lines in a plane which pass

through a given point are said to form a pencil of lines. The

point is called the center of the pencil. 11 Ax + By ~\- C = 0,

and A'x + B'y -\- C' = are any two lines of the pencil, then

(3) (Ax -f % 4- 0)-h k(A'x + B'y + 0')= 0,

where k is an arbitrary constant, represents a line of the

pencil. This is true because the equation- (3)

(a) is of the first degree in x and y and therefore represents

a straight line

;

(b) is satisfied by the coordinates of the point of intersec-

tion of the two given lines. Why ?

Example 1. Eind the equation of the line through the

point (2, — 5) and parallel to4:X-{-2y-{-5 = 0.

The system of lines parallel to 4:X -\-2y -\- 5 = is given

by the equation y= — 2 x -\-7c. Since we want the particular

line of the system that passes through the point (2, — 5), the

equation must be satisfied by these coordinates. It follows

that, — 5 = — 4-f-A:orA;= — 1.

Therefore, y = —2x — 1 is the desired equation.

Example 2. Find the equation of the line through the

point (4, — 1) and perpendicular toSx-\-2y — 5 = 0.

The system of lines perpendicular to 3x-\-2y — 5 = is

given by the equation y = ^ x -\- k. Since we want the line of

the system that passes through the point (4, — 1), we have

k = — y . Therefore, the desired equation is

y=2x_i_i or 2a; -31/ -11 = 0.

Example 3. Find the equation of the line through the

intersection of 2x-\-y — 4: = and x-{-y—l=0, and perpen-

dicular to x-\-2y = S.

Any other line through the intersection of the given lines is

(4) (2x -{- y - 4:)+ k (x + y - 1) =0
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or

x{2 + k)-\- y{l + k) + {- i - k) = 0.

The slope of this line is — (2 + k)/{l + A:) and this must

be equal to the negative reciprocal of the slope of the straight

line X -f 2 2/ = 3. Therefore,

-2^^=2 and k=-^.
1 + k 3

Substituting this value in equation (4) and simplifying, we

have 2x — y — S = 0, the required equation.

EXERCISES

1. Find the equation of the straight line through the point (1, 5) and

parallel to2x-\-Sy— 9=0; perpendicular to2x + 32/ — 9 = 0.

Alls. 2x +3?/-17 = 0; 3x-2y+ 7 =0.

2. Find the equations of the altitudes of the triangle whose vertices

are (2, 8), (4, - 5), (3, - 2).

3. Find the equation of the straight line through the intersection of

10x4-5^ + 11 = and x +2y + 14 = which is perpendicular to

x + 7y + l=0; parallel io S x - 7 y = I.

4. Find the equation of the straight line through the intersection of

X -\-2y — 4: = and x — Sy-^1=0 which is perpendicular to Sx — 2y

+ 4 = 0; parallel to x — y = 0.

5. Find the equation of the straight line through the intersection of

X -\-y - 1 = 0, x-3y+4 = and

(a) through the point (1, 1) ;
Ans. x + 6y — 6 = 0.

(&) parallel to the line x + 2?/ — 9 = 0;

(c) perpendicular to the line 4 x — 5 ?/ = ;

((7) through the intersection of3x + 4?/ — 8 = and x— 5j/ + 7=0.

6. Find the equation of the straight line which passes through the

point

(a) (0, 0) and is parallel to2x — y + 4 = 0;

(6) (1, 2) and is perpendicular to3x— 2^/ — 1 =0;
(c) (— 1, 2) and is parallel to x — y — i=0.

7. Find the equation of the line which passes through the inter-

section of X — 2^ + 2 = and x + y = and through the intersection of

x + y+2 = 0, x-?/ = 0.
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8. Find the equation of the straight line through the intersection of

x-2y -{-7 = and 2x-y-i-S = and

(a) parallel to the aj-axis
;

(6) parallel to the «/-axis.

9. Find the equation of the straight line which passes through the

intersection ofSx— ^ + 2 = and x + y = 6 and which

(rt) passes through the origin

;

(b) is parallel tox — 4?/ + 3=0;
(c) is perpendicular to 3aj — 2^ + 4 = 0.

69. Intersection of Two Lines. Simultaneous Equations.

We have just seen that linear equations in one or two vari-

ables are represented in rectangular coordinates by straight

lines. We now wish to determine the coordinates of the point

of intersection of two lines whose equations are given. That

is, algebraically, we wish to find a set of values for x and y

which satisfy both equations.

Example 1. Solve the equations

(6)

(6)

Sx — 4:y = 7.

x-\-2y=9. mMultiplying equation (6) by 2 and add-

ing the result to equation (5), we obtain

5 a; = 25, or X = 5.

Likewise multiplying equation (6 ) by 3 pj^ ^i
and subtracting the result from equation

(5), we have — 10 y = — 20, or y = 2. The set of values x = 5, y = 2 is

seen to satisfy both equations and is called the solution of the given

equations. If we plot lines (5) and (6) (Fig. 41), we see from their

graph that the coordinates of their point of intersection are (5, 2).

Therefore, a method of solving two linear equations in one or two

variables is to plot the lines represented by each equation, and then deter-

mine from the graph the coordinates of the point of intersection. The

algebraic method of first eliminating one variable and then the other has

the advantage over the geometric method in that it is always accurate.

Instead of eliminating twice, the value found for either variable can be

substituted in either equation, and the value of the second variable de-

termined.



94 MATHEMATICAL ANALYSIS [III, § 69

Example 2. Solve the equations

(7)

(8)
T ~ ~ ~ n -

C\

^^ ^
^A ^

•i

%

^

^' ^ -?-

gf*

^

^
y

^ n Y""
__ _

x-2y = S.

X — 2 ?/ = — 5.

Subtracting the second equation from

the first, we obtain = 8. Tliat is, there

are no values of x and y satisfying both

equations. Such equations are said to

be inconsistent or incompatible. We see

that lines (7) and (8) have the same slope,

but different y-intercepts, and therefore are parallel lines.

Example 3. Solve the equations

Fig. 42

(9)

(10)

x-y = 2.

2x 2y=4.

Multiplying the first equation by 2 and subtracting the second from it,

we have 0=0. If equation (10) be divided by 2, equations (9) and (10)

are seen to represent the same relation between x and y, and are not

therefore sufficient to determine x and y. We can assign to either vari-

able an arbitrary value and then find the corresponding value for the

other variable. The equations can, therefore, be said to have an infinite

number of solutions. Such equations are called dependent. The graphs

of these equations are coincident lines.

Let us now consider the general equations

(11) aiic + bill = Ci ,

(12) a-^x-^ b^ = C2,

where none of the constants are zero. Eliminating y, we

obtain {a^bz — a2&i) x = C162 — Cobi . Eliminating x, we ob-

tain {oibo — aib^) y = aiC2 — a^c^ . Now if 0162 — 02^1 =^ ^) we

have
C261

x^"^^^^ aiC2 — «2Ci

we cannot

aib2 — 0.2^1 ^1^2 ~ ^2^1

If, however, aib^ — aa^i = 0, i.e. a.^ja^ = &2^i)

solve for x and y. Denoting the common value of these quo-

tients by A:, we have ag = fcai , 62 = ^^1 • Then equations (11)

and (12) become a^x + b^y = Ci , and "ka^x -f- Icb^y = Co

.
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We must now distinguish two cases according as C2 = kci or

C2 ^fc kci . In the former case, by dividing out k, we see that the

equations are dependent and have an infinite number of solu-

tions. In the latter case they are inconsistent, and thus are

not satisfied simultaneously by any values of x and y.

Discuss the cases that arise if some of the constants are zero.

EXERCISES

Find, when they exist, the coordinates of the points of intersection of

the following lines. Check your answer from a graph.

1. 4a; + 2?/=:9. 3. x + 2y = 3. 5. a: + 4?/ = l.

2x-5y = 0. 2x+4y = 6. 2x + 8?/ = 2.

2. 3x + 4?/ = 12. 4. x-2y = 7. Z.x-^y = 1.

X — y = b. 2x — iy = b, — x -\-2y = 3.

In the following exercises are the lines concurrent ? If so, what point

have they in common ?

7.x + 2?/ = 3. 8.x-y = -l. 9. x+2y = 5. 10.x-2y = 3.

x — y = 0. 2x-{-y = S. 6x— y = 3. 5 x — y = 2.

5x— ?/=4. Sx-2y = l. 2x + y=4. 2x + 3?/ = l.

In the following exercises, find k so that the lines shall be concurrent.

ll.x+y = 2. 12.2x-y-0. 13. 3 x - y = 4.

2x—y = l. x + 3y = 7. x + y = 0.

4x + y = k. Ans. b. x -^ ky = b. b x — 2 y = k.

14. The sides of a triangle have for their equations 2 x + y = 5,

a;— ?/ = 10, — 2x + ?/ = 6. What are the coordinates of the vertices of

this triangle ? What are the equations of the altitudes ?

15. Find the equation of the straight line through (2, 1), (—1, 2),

using the equation Ax + By + C = 0. [Hint : Solve for A/C and B/C]

16. Find the equation of the straight line through (4, 7) and having

the slope 3, using the equation Ax + By -\- C = 0.

17. It has been shown experimentally, that the length I of a wire in feet

under a tension of p pounds, is I = a + bp, where a and b are constants.

Find a and bii 1= 190 when p = 270, and that I =190.2, when p = 450.

18. The readings T and 8 of two gas meters are connected by the

equation T = a -}- bS. Determine a and b when we know that 8 = 10,

when T = 300, and S = 100, when T= 420.
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19. The pull in pounds to lift a load I in pounds with a pulley is given

by the relation p =: al + b, where a and h are constants. Find a and b

when it is known that a pull of 8 pounds lifts a load of 40 pounds, while it

takes a pull of 2 pounds to hold the rope on when no weight is attached.

70. Equations Containing More than Two Unknowns. It

is easy to see that the methods employed in § 69 for solving

a system of two simultaneous equations, each containing two

unknown quantities, may also be employed for solving a

system of three or more equations, involving as many unknown

quantities as there are independent equations.

Example. Solve the equations

(13) 7x-\-Sy-2z = 16.

(14) 5x-y-\- 6z = Sl.

(15) 2x + 6y + 3z = S9.

Adding three times (14) to (13) gives

(16) 22 X + 13 ;s = 109.

Adding five times (14) to (16) gives

(17) 27 a; + 28^= 194.

Solving equations (16) and (17) by the methods of § 69, we have a; = 2,

z = 5. Substituting these values in (13), we obtain y = i. It is readily

seen that x =2^ y = 4, z = b satisfies equations (13), (14), (15).

The cases in which three simultaneous equations in three

unknowns have no solution, or an infinite number of solutions,

will be discussed in Chapter XXI.

EXERCISES

Solve the following simultaneous equations :

l.->2x-\-4y-{-z = 12. 2. X + y + z = IS. 3. 2x -Sy - z = 2.

^^x-\-y-z = S. x-2y-{.iz = l0. 6x-i-2y + z = -8
x -\- y + z = 7. 3x + y~Sz=5. x—2y — z = 2.

4. a; + 8 2/
- 4 = 9. 5. w + a- 4- ?/ = 15. 6. a: + y = 4.

3x+3?/ — = 6. x + y -{ z = 19,. 2x-\- z = 4.

bx + 2y-2z = l. wj + ?/ + 0=17. y-2 = 3.

10 + X + = 16.
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7. If A and B can do a piece of work in 10 days, and A and C in 8

days, and B and C in 12 days, how long will it take each to do the work

alone ?

8. Three towns A, B, and C are situated at the vertices of a triangle.

The distance from A to B via C is 76 miles ; from A to C via B 79 miles;

from B to C via A 81 miles. Find the distance from A to B, from B to

C, from C to A.

9. In a triangular track meet the following was the final score :

SCOKE First Place Second
Place Third Place Total

College A . . .

College B . . .

College C . . .

5

2

2

3

4

2

3

1

6

37

23

22

How many points did each place count ?

10. Two passengers traveling from town A to town B have 500

pounds of baggage. The first pays $ 1.75 for excess above weight allowed,

the second $1.25. If the baggage belonged to the last passenger, he

would have to pay $ 4 excess. How much baggage is allowed to a

single passenger ?

11. A crew can row 4 miles downstream and back again in 1| hours,

or 6 miles downstream and half way back in the same time. What is

the rate of rowing in still water, and what is the rate of the current ?

Ans. 6 miles per hour ; 2 miles per hour.

12. Two trains are scheduled to leave two towns A and B, m miles

apart, at the same time, and to meet in h hours. The train leaving A
was k hours late in starting, so the trains met n hours later than the

scheduled time. What is the rate at which each train runs ?

13. Two men are running at uniform rates on a circular track 150 feet

in circumference. When they run in opposite directions, they meet every

5 seconds. When they run in the same direction, they are abreast every

25 seconds. What are their rates ?

14. Find a, &, c, so that y = a -\- bx -\- cx^ shall be satisfied by (2, 1),

(1,0), (3,-6).
6a;2_ic-3 a

16. Find a, 6, c, so that
x^ X + 1 X,



CHAPTER IV

THE QUADRATIC FUNCTION

I. GRAPHS OF QUADRATIC FUNCTIONS

71. The General Quadratic Polynomial ax^ -h bx -{-c.

Having considered in some detail the linear function mx + b

and its geomietric interpretation, we now turn our attention to

a similar study of the quadratic function, i.e. sl function ex-

pressed by a polynomial of the second degree in one variable.

Such polynomials are, for example, a;^ -f- 1, 100 -f- 50 ^ — 16.1 f^j

etc. The general form of such a polynomial is ax^ -\- hx^ -f c,

where a,h, c are constants and a^O. Such functions abound

in practice. Thus, if a projectile be shot vertically upward

from the top of a tower 100 ft. high, with an initial velocity of

50 ft. per second, the distance s (in feet) from the ground at

the end of t seconds, is given approximately by the poly-

nomial

s = 100-f 50i-16.1f2.

The general formula for the distance s from the ground at the

end of t seconds of a projectile shot vertically upward is

(approximately)

where Sq is the distance from the ground when t = 0, Vq is the

initial velocity, and g is the so-called " gravitational constant,"

which varies slightly from place to place but is approximately

equal to 32.2 when the distance s is measured in feet and the

time is measured in seconds.
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72. The Function x^. We consider first the simplest of all

quadratic functions, viz. the function y = x^. A brief tabular

representation of this function is as follows :

X 1 2 3 4 -1 -2 -3 -4

y 1 4 9 16 1 4 9 16

If we plot these points, we obtain Fig. 43, in which we notice

that the points seem to be arranged according to some regular

law. We may insert additional points by calculating values

~

Y

*

1

~\

^///A

t '/, V'

z w,

wM
XV

Fig. 43

of y for values of x between those already used. Thus

for X = 1.5, y = 2.25 and a; = — 1.5 y = 2.25. These points

are also marked on the figure. In general we see that for

X = a and also for a; = — a, we have y = a^. . Geometrically

this means that the graph is symmetrical with respect to the

2/-axis, i.e. if the part of the graph on the right of the y-axis

is turned about the ?/-axis until it falls in the original plane,

it will coincide with the part on the left of the y-Sixis. More-

over, since x"^ is positive (or zero) for all real values of x, no

part of the graph will be below the a;-axis.
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Keeping these facts in mind we shall make a more detailed

study of this function and its graph, by considering values

of X which are closer together. We shall confine ourselves to

values of x between x = and x = 2. The corresponding

values of y, for all values in this range at intervals of 0.1 of

a unit, are given in the following table

:

X y X y X y X y

0.1 0.01 0.6 0.36 1.1 1.21 1.6 2.56

0.2 0.04 0.7 0.49 1.2 1.44 1.7 2.89

0.3 0.09 0.8 0.64 1.3 1.69 1.8 3.24

0.4 0.10 0.9 0.81 1.4 1.96 1.9 3.61

0.5 0.25 1.0 1.00 1.5 2.25 2.0 4.00

We cannot, with any accuracy, insert in Fig. 43 the corre-

sponding points of the graph. We therefore adopt a pro-

cedure analogous to the use of a magnifying glass, in order to

separate the points. This we have done in Fig. 44 by choos-

ing the unit on each axis 10 times as large as in Fig. 43. We
then see that there is no difficulty in plotting all the points

given in the above table.

Let us study more carefully the immediate neighborhood of

some point on the graph, for example, P(l, 1). We shall

magnify the shaded area in Fig. 44 in the ratio 10 : 1 and

make use of the following table

:

X y X y X y X y X y

0.90 .8100 0.95 .9025 1.00 1.0000 1.05 1.1025 1.10 1.2100

0.91 .8281 0.96 .9216 1.01 1.0201 1.06 1.1236

0.92 .8464 0.97 .9409 1.02 1.0404 1.07 1.1449

0.93 .8649 0.98 .9604 1.03 1.0609 1.08 1.1664

0.94 .8836 0.99 .9801 1.04 1.0816 1.09
1

1.1881
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It will be noted that the points of the graph now lie almost

on a straight line (Fig. 45). We have drawn a straight line

through P for the purpose of comparison. If we should desire

a more detailed representation in the neighborhood of the

point P, we should calculate the values of y for values of x

between x — .99 and x = 1.01 and draw anew a small portion

w-

1.2

1.1

1.0

0.9

i

1 2

Fig. 44

.90 1.0

Fig. 45

1.1

of the figure about P under a tenfold increase of the unit.

We would then find that the points would hardly be distin-

guishable from the points on a straight line.

Similar conclusions might be reached near any other point

on the graph. It is of course impossible to prove this for

each separate point by separate calculations. To prove the

fact generally we proceed as follows. Let x^ be any particular

value of the variable x and y^ the corresponding value of the

function y ; then y^ = x^^. Now suppose that the value x

is increased or decreased by a certain amount, which we shall

call Ax (a decrease means that Ax is negative). The new

value of X is then Xi -f Ax and the corresponding value of the
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function is {xi + Aa;)2, This new value of the function differs

from the original value of the function, yi, by a certain amount

which we shall call Ay. We then have

2/1 + A?/ = (xi -h Axy

= Xi_^4-2xiAx + Ax"^',

but

2/1 = a^i

Therefore, by subtraction,

or

(1)

Ay = 2 cciAic + Ax'^

Ay = (2xi-\- Ax) Ax.

Since formula (1) is true for every value of Xi , it follows that

Ay approaches zero when Ax approaches zero. This means

that in the neighborhood of the point {x^
, y^) we can find new

Fig. 46

points on the graph whose x and y differ from those of the

given point by as little as we please. This simply means that

the set of all points of the graph oi y = x^ form a set of points

with no gaps between them ; they form what we may call a

continuous line or curve.*

* A function is said to be continuous for a value x = Xi, if when Aa; ap-

proaches the corresponding Ay also approaches 0. See footnote on p. 19.
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Further, equation (1) gives the relation,

^ = 2 iCi + Ax (if ^x 4- 0).
Aa;

From the graph (Fig. 46) we clearly see that this change ratio

is the slope of the line joining the points P^ix^
, y^) and

P2(i>^i+ Aa;, 2/1+ A?/).* If the latter point approaches the former

along the curve, i.e. if we let Ace become numerically smaller

and smaller, then the change ratio A?/ / Ao? will differ less and

less from 2xy. Indeed, we may choose Aic sufficiently small

(without making it zero) so that A?/ / Ax- will differ from 2 x^

by less than any previously assigned amount.

Geometrically this means that in the immediate neighbor-

hood of the point Pi on the graph oi y — a?^, the points of the

graph lie very near to the straight line through Pi whose slope

is 2 x^. From a somewhat different point of view, we can let

the secant joining the points Pi {x-^
, y^) and Pg {xi-\-Ax, yi-\-Ay)

on the graph rotate about Pi in such a way that Aic, and there-

fore Ay, become smaller and smaller and the secant approaches

a definite position.through Pi whose direction has the slope 2 Xi.

This line is by definition tangent to the graph at Pj , or the

graph is tangent to the line at Pi ; the point Pi is called the

point of contact. Combining the above results we have :

The graph of the function y = x"^ is a continuous curve, above

the X-axis, symmetrical with respect to the y-axis, and passing

through the origin. At any point Pi {xi , i/i) on the curve, the

straight line ivith slope 2 Xi passing through this point is tangent

to the curve.

73. Further Observations regarding the Function y = x\

The preceding result tells us that when x= 1, the slope of the

tangent is 2. Reference to Fig. 45 will verify this result for

* This follows also directly from the formula m = {yz— 2/i)/(x« — ^i)-
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the straight line there drawn, since this line has the slope 2.

In Fig. 47 we have reproduced Fig. 43 except that we have

replaced the several points plotted in the earlier figure by a

continuous curve and have drawn the tangent at the point

P(l, 1). Knowing that the slope of the tangent is 2, we can

easily construct the tangent. Starting from P we lay off any

convenient distance PM to the right and then lay off double

this distance MQ upward. The line PQ is then the required

tangent. A similar process leads to the construction of the

tangent at any other point of the curve.

From the fact that the slope of the tangent at any point on

the curve whose abscissa is Xi is 2 a^i, we see that as Xi increases

numerically the slope increases numerically, that is, the curve

becomes steeper and steeper the farther we go from the origin.

Also the slope is positive when x^ is positive and negative when

Xi is negative. This means that going from left to right the

curve slopes downward at the left of the origin, and upward at

the right of the origin. When a; = 0, the slope is zero, that is

to say, the tangent is parallel to the a;-axis (here it coincides

with the aj-axis).
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Hitherto in our drawings we have chosen the unit on the

t/-axis to be equal to that on the cc-axis. This renders it im-

possible to draw the graph of the function y = x"^ for large

values of a;, without making it of unwieldy size. However

t I
t 7. _

- t 7
I } ^
^

^ ^
t Zr /

^z~
- z^i-
// enJ -U

t ^ ^
"I ::^^: : : :

A-- -«-- i'X ^J ir
:: ~A~r- : : :

^<^
:- = r'V.. _ .23456789 10

Fig. 48

nothing prevents us from choosing the unit on the t/-axis

smaller than that on the ic-axis, and in Fig. 48 we have chosen

it one tenth as large. A tabular representation is as follows :

X ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10

y 1 4 9 16 25 36 49 64 81 100

In this case the slopes of the tangents are, respectively,

±2, ±4, ±6, ±8, ±10, ±12, ±14, ±16, ±18, ±20.

We have drawn the tangent at the point for which x = 5, and

have drawn the graph only for positive values of x.

Example. Find the equation of the tangent to the graph of

2/ = a;2 at the point (3, 9).

The slope of the tangent at the point (x^
, 2/1) is 2 a?] . There-

fore at (3, 9) the slope is 6. The equation of the tangent is,

therefore, y — 9 = 6{x — S) oy y = 6x — 9.
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EXERCISES

1. Discuss the functions y = — x^
; y = 2x'^

\ y =— 2x^.

2. Construct for the point (2, 4) of the function y = x^ n. figure anal-

ogous to Fig. 46. (Use a table of squares.)

3. Use the adjoining figure to give a geometric interpretation of the

X Ax equation Ay = 2 xiAx i- Ax"^. The function y —x'^ is

Ax ^^^® interpreted as the area of the square whose side

is X.
f////////M %

%
Ax

4. If in the function y = x^ we take x = 3, how
small must Ax be taken in order that Ay shall be

numerically less than 0.01 ? if we take x = 15 ? Is

the difference between these two results to be expected in view of the

nature of the graph ?

5. Draw the tangents to the curve 2/=x2 at the points for which x=0,

± i, ± 1, ± -I, ± 2.

6. If X is the radius of a circle and y is its area, prove that the

change ratio Ay / Ax approaches the length of the circle as Ax approaches

zero.

7. Find the equations of the tangents to the curve ?/ = x^ at the

following points : (1, 1); (2,4); (-1, 1); (-2, 4). Construct the

tangents at these points.

8. The line perpendicular to the tangent at the point of contact is

called the normal to the curve at this point. Find the equations of the

normals to y = x^ at the points (1, 1) ; (2, 4) ;
(— 1, 1) ;

(— 2, 4). Con-

struct each normal making use of its slope.

Ans. For the point (1,1): x + 2y-S =0.*

9. Find the slope of the tangent to y = 3 x^ at the point whose abscissa

is xi. What is the value of this slope at the point (1, 3) ?

10. Find the equations of the tangent and the normal (see Ex. 8) to

y = 3x2 at the points (3, 27) ;
(- 2, 12).

11. Find the points where the slope of the curve y = x^ has the values

- 1 ; 2 ; 10.

12. 1 cu. ft. of water weighs 66.4 lb. What must be the diameter x

of a cylindrical can such that 1 in. of water contained in it will weigh

y oz. ? Plot the graph and find x when y = 50. Find y when x = 8.

* Assuming the units on the axis to be equal.
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74. The General Quadratic Function j/ = ax^ + 6x + c.

We may now dispose of the general case. Let

y = ax^ -\- bx + c {a =^ 0)

be any quadratic function (in the case y = x^, a was 1, while

b and c were 0). Let x increase from the value Xi to the

value Xi -f Ax, and suppose that this change in the value of x

changes the value of the function from 2/1 to yi -f Ay. We desire

to calculate the value of Ay and of the change ratio Ay/Ax.

We have

2/1 -f Ay = a(x^ + Axy-\- b(xi + Ax)+ c,

and

2/1 = a^i^ + b^i + c.

Subtracting, we obtain

(2) A?/ = (2axi-\-b -\- aAx) Ax,

and

(3) ^ = 2aXi-\-b-{-aAx (ifAa;^0).
Aa;

Equation (2) shows that Ay can be made numerically as small

as we please, by choosing Ax near enough to 0. Hence we may

say:

Every function of the form y = ax"^ -\-bx+ c is continuous.

Equation (3) shows that the change ratio Ay/Ax approaches

as a limit the value 2axi + bsiS Ax approaches 0. Hence we

may say:

The slope of the tangent to the curve y = ax^ -\- bx -{- c at the

point whose abscissa is Xi is equal to 2aXi 4- b.

75. General Properties of the Function ax^ + 6x 4- c. The

discussion in the preceding section and the exercises have

furnished us with some information regarding some special

functions of the form aa^ -{-bx -\- c.
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It will now be shown that whenever the term in ar* is posi-

tive {i.e. a is positive) the graph of the function is an inverted

a >o a < o

Fig. 49 Fig. 50

arch as in Fig. 49 and that whenever the term in x^ is negative

{i.e. a is negative) the graph is an arch like the one in Fig. 50.

To prove this we need only consider the slope of the tangent

to the curve as the point of contact moves along the curve.

We have just seen that the slope of the tangent is given by the

formula m — 2axi + & at the point whose abscissa is Xi . There

is just one point on the curve for which this slope is zero, viz.

the point whose abscissa is

^ a

Now let us write the slope m of the tangent in the form

The number in the parenthesis, i.e., Xi -f 5/(2 a), is positive

when Xi> — 6/(2 a) and negative when Xi < — 6/(2 a). Geomet-

rically this means that this parenthesis represents a positive

number for points to the right of the straight line x= —6/(2 a)

and a negative number for points to the left of this straight line.

Case 1 : a > 0. If a is positive, the slope m is positive for

points to the right of the line x = — 6/(2 a) and negative for

points to the left of this line.

In other words, for all points of the graph to the left of the

line x = — b/(2 a) the tangent slopes downward (as we go from

left to right) and for all points to the right of this line the



IV, § 76] QUADRATIC FUNCTIONS 109

hi/>o

Fig. 51

tangent slopes upward. The point for which a: = — 6/(2 a) has

its tangent parallel to the aj-axis. This point is called the

minimum point of the graph (Fig. 51).

Case 2 : a < 0. Suppose on the other

hand that a is negative. The slope m
is then negative when Xi + &/(2 a) is

positive and positive when x^ + 6/(2 a) is

negative. The slope is therefore positive

when Xi< — 5/(2 a) and negative when

Xi> — b/(2 a). At the single point for

which X — — (6/2 a) the tangent is parallel

to the aj-axis. This point is called the maximum point of

the graph (Fig. 52).

When x = — 6/(2 a) the function y = ax^ -\-

bx -\- c has a minimum value if a > and a

maximum value if a < 0.

The curve represented by the function

y = ax^ 4- 6a; + c is symmetrical ivith respect

to the line x = —b/(2 a).

The proof is left as an exercise.

Hint. Show that the points which have abscissas — 6/(2 a) + h and

— 6/(2 a) — h have the same ordinate.

Fia. 52

76. Definitions.

of the form

The curve represented by an equation

y = ax"^ -{- bx -{- c

is called a parabola. The lowest (or highest) point on this

curve, i.e. the point for . which x = — 6/(2 a), is called the

vertex. The straight line through the vertex and per-

pendicular to the' tangent at the vertex is called the axis

of the curve. The parabola is symmetrical with respect to

its axis.
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77. to draw the Graph of a Parabola y=ax'^-\~bx-^c.

The preceding discussion enables us to draw the graph of a

quadratic function without plotting many points.

Example 1. Sketch the graph of y = 2 x^ — 6 x -\- 5.

The slope of the tangent at {x^, y^ is, by § 74:^ m = 4:Xi — 6.

The vertex of the curve is the point for which 4 ajj — 6 = 0, i.e.

the point for which x^ = 3/2 ; the corresponding value of y is

1/2 and the vertex is therefore the point (3/2, 1/2). This

point is the minimum point of the

curve. We plot this vertex V, draw

the horizontal tangent at this point

and the vertical axis. We desire a

few more points and their tangents

on each side of the axis and then

we can draw the curve. For ex-

ample, we have

Fig. 53

X y m

1 1 -2
2 1 2

5 -6

Example 2. Sketch the graph

of 2/ = — aJ" + 4 a; -f- 5.

The slope of the tangent at

{xi , 2/i) is m = — 2 a^i -f 4. The

vertex of the curve is at the point

for which — 2 a^i + 4 = 0, i.e. for

which Xi = 2. The corresponding

value of 2/i is 9. Therefore the

vertex, which is the maximum
point of the graph, is at (2, .9).

The graph is given in Fig. 54.

2 4 \ 6

Fig. 54



IV, § 77] QUADRATIC FUNCTIONS 111

EXERCISES

1. Tell which of the following functions have a maximum and which

have a minimum value. Find this value in each case and the correspond-

ing value of X.

(a) 2x^ + Sx-9.
Ans. Minimum value : — 17, when x =— 2.

(&) 3 x2 -f 8 X - 6.

(c) -6x^-\-l0x- 12.

((?) 3 a;2 + 6 X - 7.

(e) -x^ + 1.

2. Find the coordinates of the vertex and the equation of the axis of

each of the following parabolas. Sketch the curves.

(a) 2/ = 2 ic2 + 5 X + 3.

(6) 2^ = 3 x2 + 9 X - 6.

(c) y = - 5 x2 + 10 X - 12.

Ans. F= (1, — 7) ; axis, x=l.
(d) ?/ = 3 x2 + 6 X - 7.

(e) y=-x2+l.

3. The area of a certain rectangle in terms of the length of its side

X is ^ = X (100 — 2 x). Find x so that this area shall be a maximum.

4. A point moves on a straight line so that its distance s from a fixed

point O on the line at any time t is given by one of the equations below.

Draw the (s, t) graph and in each case show that the variable point

reaches, on one side of O, a maximum absolute distance from 0. Find

this maximum distance. Does this maximum absolute distance correspond

to a maximum or a minimum value of s ?

(a) s = f2_4« + 3.
*

(6) s = 2fi-St + 10.

(c) s = 3 + 6 « - 4 «2.

5. Find the equations of the tangent and the normal* to the curve

y = x2 — 3 X + 1 at the point (1, - 1). Ans. y --x; y = x-2.

6. Find the equations of the tangent and the normal * to the curve

y = — 2 x2 + 3 X - 1 at the point (1, 0)

.

7. Find the equations of the tangent and the normal* to the curve

?/ = — 2 x2 + 4 X — 1 at the maximum point. Ans. y = I ; x = 1.

8. Find the equations of the tangent and the normal* to the curve

y = 3x2 — 6x+lat its vertex.

* See Ex. 8, p. 108.
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78. The Graph of y - k = a{x- Kf. The face that the

graphs of functions of the form y = ax- -f- 6a; 4- c, all have the

same general shajje but are differently located with respect

to the coordinate axes suggests that many of these graphs

may consist of curves, which might be brought into coin-

cidence by a suitable motion in

the plane. That this is indeed

the case results from the follow-

ing considerations, which lead to

a general principle of far-reach-

ing importance.

Suppose the graph of the equa-

tion y = ax^ is moved parallel to

itself through a distance and

direction which carries the point to the point Q {h, k).

What will be the equation between the x and y of any point

P on the curve in its new position, the axes of coordinates

remaining in their original positon ? This question is readily

answered. Let P' be the position of P before it was moved.

The equation y — ax^ then tells us that M^P — a • OM'^ for

every position of P' on the curve in its old position. After the

motion, the directed segments OM' and 3PP' become respec-

tively the (Erected segments QR and EP. Hence, for every

point P on the curve in its new position we have

(4) RP=a'QR\
If the coordinates of P are (x, y) we have x = Oil/, y = MP

and
QR = x-h, RP=:y-k.

Therefore, by (4), the curve in its new position is the graph

of the equation

(5) y — k = a ' (x — hy.

While we have applied these considerations to the function
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y = ax^, the reasoning is general ; consequently we may formu-

late the following principle

:

GEJfEEAL Principle. If in any equation between x and y ice

replace x by x — h and y by y — Jc, the graph of the neiu equation

is obtainedfrom the graph of the origiyial equation by moving the

latter graph parallel to itself in such a ivay that the point moves

to the point (Ji, k).

We shall have occasion to apply this principle often in the

future.

79. Transformation by Completing the Square. At present

we may use the principle just stated to prove that the parabolas

y = ax"^ -{-bx-^- c and y = ax^ are congruent curves.

This follows at once from the preceding general principle, if

we prove that the equation

(6) y = ax^ -\-bx-\-c

can be written in the form

(7) y-Jc= a{x - hy.

To do this we write (6) as follows

:

2, = a(^ +^+ )+o,

and then complete the square on the terms in the parentheses by

adding the term If' / (4 a^). In order to leave the value of y

unchanged we must also subtract a y. b^ / (4a2) = b^ /{4^a) from

the expression. This gives

rrr,^ f . ,bx
, b^ \ ,

¥
(7') y = a\x'^ + —-' ' • ~

4^^;"^' 4a'

or

= a[x-{-
=)^ ' 4a V 2

This is of the form (7) for the values
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2 a 4tt

The operation just performed is called the transformation by

completing the square. It is found serviceable in a variety

of situations. It may be used to advantage in connection with

numerical examples.

Example. Discuss the graph of y = — 2 x^ + Sx— 9.

We first write

y=-2(a:2-4x+ )-9;
and tiien

?/=-2(:c2-4.x + 4)-9 + 8

or

2/ + 1=- 2 (a; -2)2.

The graph is then obtained from the graph ot y =—2x^ by moving the

latter parallel to itself so that its vertex moves to the point (2, —1).

EXERCISES

1. By reducing to the form y — k = a {x — h)^, discuss the graphs of

each of the following functions.

(a) y = 2x'^+12x-\-2. (d) y = 2x'^ - 1 x + S.

(6) 1/ =4x2 + 6a:- 9. (e) y =- Ax"- + 1 x +2.
(c) ?/ = - 3 x2 + 9 X + 10. (/) y = - 3 x2 - 8 X + 10.

2. Show that the equation of the straight line y — yi = m (x — xi) may
be derived from the equation y = mx by the general principle of § 78.

3. The results of § 79 furnish a proof of the fact previously derived,

that the vertex of the parabola y = ax2 + 6x + c is at the point for which

x=— &/(2a). Explain.

4. Equation (7') proves that if a > 0, the value x = — 6 / (2 a) gives the

minimum value to y ; also that if a<0, the value x=— 6/(2a) gives

the maximum value to y. Explain without using the graph.

Write the following equations in the form a (x — hy + 6 (y — ^')2 = c,

where a, b, c, h, and k are constants.

6. x2-4x + 2?/2-8 2/ = 2. 8. x^ + y^-iy = 2.

Ans. (x-2)2 + 2(2/-2)2 = 14. 9. a;2-8x + y2 = o.

'6. -2x2 + 4x+?/2_4y_3_0. 10. 3x2-4x-y2 +2 =0.

7. 4 x2 - 4 X + 2 y2 _ 3 y ^ 1 _ 0.



IV, § 80] QUADRATIC FUNCTIONS 115

II. APPLICATIONS OF QUADRATIC FUNCTIONS

80. Maxima and Minima. We have seen that a quadratic

function ax^ -\-bx + c has either a maximum or a minimum

value according as a is negative or positive. Numerous appli-

cations involve the problem of finding this maximum or mini-

mum value and the corresponding value of a;, as the following

examples show.

Example 1. A rectangular piece of land is to be fenced in and a

straight wall already built is available for one side of the rectangle.

What should be the dimensions of the rectangle in order that a given

amount of fencing will inclose the greatest area ?

Before beginning the solution proper we should note carefully the sig-

nificance of the problem. The length of the fence being given, we may
use it to inclose rectangles of a variety of shapes, as indicated by the

dotted lines in Fig. 56. Some rectangle whose shape is between those

indicated will inclose the maximum area.
|.^,,^,,,,,,,,^^^^^^^^^

1

X

I—

I

Fig. 50

To determine this shape is our problem.

To do this, it is necessary to express the
|

'

y j

area (the quantity we wish a maximum)
as a function of one variable.

Solution : Let the dimensions of the

rectangle be x and y and suppose the given length of fencing is L. We
then have

(8) 2x + y = L.

The area inclosed is J. = xy, which from (8) becomes

A = x(iL-2x)=Lx-2 x^.

Plotting this function, we have the parabola in Fig. 57. We desire to

find the value of x corresponding to the vertex

V of this parabola, for this gives the greatest

value to A. The slope m of the tangent is

given by the equation m = L — ix, and this

is zero (tangent horizontal at V) when x = \ L.

ZZ^ For this value oi x, y = ^ L. The maximum

area is therefore obtained when the width is

one half of the length. The maximum area

F.G. 57 is i L^ square units.
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Example 2. Three streets intersect so as to inclose a triangular lot

ABC. The frontage of the lot on BC is 180 ft. and the point A is 90 ft.

back of BC. A rectangular

building is to be constructed

on this lot so as to face BC.
What are the dimensions of

the ground plan which will

give the maximum floor

area?

In Fig. 58 we have drawn
the lot ABC and have indi-

cated by dotted lines two

extreme plans. The ground

plan sought must be somewhere between these two extremes. To deter-

mine its dimensions we proceed as follows :

Let X and y be the length of the sides of the ground plan. The floor

area (neglecting the thickness of the walls) is

(9) A = xy.

In order to express A, for which we seek a maximum, in terms of x

alone, we now proceed to express y in terms of x. The triangles ABC
and ^ilifiV" are similar. (Why?) Hence we have

This gives

whence

(10)

From (9) and (10) we obtain

MN^^LA
BC DA

x 90-

(Why ?)

180 90 '

y = - i a; -H 90.

A = 90 X - I x^.

This expresses the floor .area as a function of the side x. The slope of

the tangent to the graph is given by

mz=90 - X

and this slope is zero when x = 90, which in turn gives (by (10)) y = 45,

and therefore A = 4050. The maximum area is then 4050 sq. ft. and this

is obtained by making the building 90 ft. long and 45 ft. deep.

Draw the graph of the function A = 90x-^ ^ x'^.
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We may note that in both of these examples, the function of

which the maximum was sought was obtained as a function of

two variables. The conditions of the problem, however, made

it possible to express one of these variables in terms of the

other and thus to obtain the desired function as a quadratic

function of one variable, whereupon the solution was readily

effected. The difficulty in this type of problem is usually in

connection with the elimination of all but one of the variables.

To solve such a problem it is necessary to keep in mind the

following steps.

(1) Decide, and express in words, of what function a maxi-

mum or a minimum value is to be found.

(2) Express this function algebraically.

(3) If this expression contains more than one variable, use

the conditions of the problem to find a relation or relations

connecting these variables.

(4) By means of the relation or relations found, eliminate

all but one of the variables from the function of which a maxi-

mum or minimum value is sought.

(5) Proceed with the algebraic computation.

EXERCISES

1. The number 100 is separated into two parts such that the product

of the parts is a maximum. Find the parts and the corresponding

product. -^ns. 50, 50, 2500.

Is it possible to separate 100 into two parts such that the product of the

corresponding parts is a minimum ? Explain.

2. Prove that the rectangle of given perimeter which has the maxi-

mum area is a square.

3. Find the greatest rectangular area that can be inclosed by 100 yd.

of fence.

4. Separate 20 into two parts such that the sum of their squares will

be a minimum.
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5. A man desires to build a shed against the

back of his house, the ground plan to be a rec-

tangle. The roof is to be 1 ft. higher in the

back than in the front (see the adjoined figure).

He has on hand enough siding to cover 253 sq. ft.

Allowing 18 sq. ft. for a door and assuming that

the height from the ground to

the lowest part of the roof is 8

ft., what should be the dimen-

sions of the ground plan in

order to get the greatest floor area ?

6. An underground conduit is to be built, the

cross section of which is to have the shape of a rec-

tangle surmounted by a semicircle. If the cost of

the masonry is proportional to the perimeter, and if

the perimeter is 30 ft., what should be the dimensions of the cross section

in order that the conduit will have a maximum capacity ?

7. The same problem as in Ex. 6 with the perimeter of the cross section

given as a ft.

8. Determine the greatest rectangle that can be inscribed in a given

acute angled triangle whose base is 2 5 and whose altitude is 2 a.

*9. In the corner of a field bounded by two perpendicular roads a

spring is situated 8 chains from one road and 6 chains from the other.

How should a straight path be run by this spring and across the corner so

as to cut off as little of the field as possible ?

Ans. 12 and 16 chains from the corner.

81. Table of Squares. We have stated that the more

important functions have been tabulated (§ 28). The function

x^ is one of these. Tables of squares are very helpful in

shortening computation. A comparatively rapid method of

constructing such a table is given in Ex. 2 below. Here we

may make use of our knowledge of the function x^ to see that

for a sufhciently small interval in such a table, we are justified

in using linear interpolation (§ 56). Indeed we have seen that

* The function whose minimum is sought is not in this case quadratic

An approximate solution may be obtained graphically. The solution may be

computed by finding the slope of the graph from the definition of slope.
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in a sufficiently small neighborhood of any point on the graph

of y = x^, the graph differs as little as we please from a straight

2 line. (See Fig. 45.) For example, if in the second

table on p. 100 we confine ourselves to only three-place

.94 .884 accuracy, we find that the successive differences in

.95 .903 , p . , . -, ,

g22 the function are almost proportional to the corre-

.97 .941 sponding differences in the variable. We give in

.960 the adjoined table an extract from the table men-

tioned. From this table we may conclude that

(.953)2 =.909.

This result is accurate only to the third decimal place.

EXERCISES

1. Find by interpolation from the above table the following :

(.954)2; (.981)2; (9.66)2; (9.89)2.

2. Compute by actual multiplication the squares of all the integers

from 31 to 40. This method of computing a table of squares becomes very

laborious. Write the results obtained from

your computation in a column, and write op-

posite each pair of successive squares their

difference as shown in the adjoined beginning

of such a table. These differences are called

the flrst differences of the table. Do you ob-

serve any regularity in the formation of these

differences? Prove in general the law here

suggested.

[Hint. Consider the difference between A;2 and (k + 1)^.]

Use this law to construct a table of squares from 41 to 100.

3. If the successive differences of the Jirst differences are formed, we

obtain the so-called second differences. Prove that in a table of squares

of successive integers the successive second differences are all equal to 2.

The first differences, therefore, have the character of a linear function.

Hence show how to compute the exact value of (.S2.6)2 from the value of

(32)2 and (33)2^ This process is known as quadratic interpolation.

X a:2 Difference

31

32

33

961

1024

1089

63

65

34

35

36
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III. QUADRATIC EQUATIONS

82. Definitions. An equation of the form ax^ -\- bx + c = 0^

where a, b, and c are constants and a =^ 0, is called a quadratic

equation.

A value of x which when substituted in the equation

ax"^ -\- bx -{- c = makes both members identical is called a root

Example 1. ^s 3 a root of the equation 2x^— 5x-\-6 = 0?

Substituting 3 for x, we find 2.3- - 5.3 +Q = 9 and not 0. Therefore

3 is not a root.

Example 2. Determine k so that one root of 2 kx- — 3 ar + 5 = shall

be 1.

Since 1 is to be a root, we have 2 A: — 3 -|- 6 = 0, or k =— 1. The

e( [nation then becomes — 2 ic- — 3 a; + 5 = 0.

83. The Roots of ax^-^bx-\-c =0. It follows from § 79

that the equation ax^ -f- te + c = may be written in the form

5 \2 52 _ 4 ofc

V 2 ay 4a

provided a ^ 0. Dividing by a and solving for (x + 6/(2 a)),

we have
^ ^^_^

1^ +2^>=^U?
ac

or

6 , V62-4ac
2a 2a

hence

(11)
b ± V62-4ac

2a

We have shown up to this point that if ax^ -{-bx-\- c has the

value 0, then x must have one of the values given in equa-

tion (11). We need still to prove the converse : If

— bH-Vb2 — 4flc — 6 — V62 — 4ac
X = X_r or x = ,

2a ' 2a
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then ax^ -\-hx-\- c will have the value 0. This can be done by-

substituting the values of x in turn in the expression ax^-^-hx-^-c

and simplifying the resulting expressions.''^

The last part of this proof is essential. We know that the

converse of a true theorem may be false.t The first part of

our discussion proved that no other values of x than those

given by (11) will satisfy the equation aoi^ -\-bx-\- c = 0, but it

did not prove that either of these values does satisfy the given

equation.

Equations (11) maybe used as a formula for solving a quadratic

equation. Thus, solving

2 aj2 _ 5 aj _ 13 =

where a = 2, 6 = — 5, c = — 13, we have

or

5±V25-4(2)(-13)x_
4

5 ± Vl29

Solution by Factoring. If the factors of a quadratic

equation may be found readily, one may proceed as in the

following example.

Example. Solve x"^ - Sx -\- 2 =0.

This equation may be written in the form

(a;-2)(x-l) = 0.

Therefore,
x-2 = or X--1 = 0,

i.e.

x = 2 or x=l.

Why? See § 48.

* The converse can be proved at present only if &2 _ 4 ac is not negative.

Why ?

t Thus the converse of the true statement, " A horse is an animal," would

be the false statement, " An animal is a horse."
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EXERCISES

Determine whether the roots of the following equations are as stated.

1. x2_ 5a;4-6 =0 ;2, 3. 4. 2^2 _ 5^ + 3 = O; 1, - 2.

2. a;2 + 5 x - 6 = ; 1, 2. 5. a;2 - 7 = ; V7, - V7.

3. x2 - 12 a: + 30 = ; 5, 6. 6. 7 a:2 _ 2 x + 51 := ; 0, 1.

In the following equations determine k so that the number beside the

equation is a root. Find the other root.

7. a;2 + 2 Ax - 5 = ; 1. 8. A:x2 - 6 x + A;2 - 1 = ; 0.

Ans. A; = 2 ; other root = — 5. 9. kx'^ — 6 A:x + 11 = fc ; 2.

Solve the following equations by means of the formula and also by

completing the square :

10. (ax + &)2 = 6 X. 15. sx2 + to - p = 0.

11. (x-5)(7x-3) = 12. jg x2 (3 x + 2)2 ^.^

12 y + 5 y^ - 5 ^ g . 4 1

7 3
*

17. 3(5x2 -10)+ 2x- 5=0.

13. x2 -f A-x - c?x2 + /i = 0. 18. x2 + (p- g)x-i)g = 0.

14. wP':r^ -\- m{n—p)x — mp = 0.

Solve the following equations by factoring :

19. x2 _ 8 x + 15 = 0. 22. 3 x2 - 17 X + 10 = 0.

20. x2 - 14 X + 48 = 0. 23. • 5 X + 14 = x2.

21. 12 - X - x2 = 0. 24. a&x2 + a2x + h'^x + a6 = 0.

25. A cross-country squad ran 6 miles at a certain constant rate and

then returned at a rate 5 miles less per hour. They were 50 minutes

longer in returning than in going. At what rate did they run ?

Ans. 9 miles per hour.

26. When a single row of rivets is used to join together two boiler

plates, the distance p between the centers of the rivets is given by the

formula

^ = 0.56^+(?,

where t is the thickness of the plate and d is the diameter of a rivet hole in

inches. In a certain make of boiler the rivets are 1 inch apart and the

plate is \ inch thick. Find the diameter of the rivet holes.

27. How high is a box that is 6 ft. long, 2 ft. wide, and has a diagonal

8 ft. in length ?
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28. The effective area JS" of a chimney is given by the formula

E = A — O.GVA^ Avhere A is the measured area. Find the measured

area when the effective area is 25 square feet.

29. Two men can row 12 miles downstream and back again in 5

hours. If the current is flowing at the rate of 1 mile per hour, how fast

can the men row in still water ?

30. Find the outer radius of a hollow spherical shell an inch thick

whose volume is 76 tt/S cubic inches.

[Hint. The volume of a sphere is 47rrY3.]

84. Graphic Solution. Example. Solve x^ — 4.x + 3=0
graphically.

Let us plot the graphs oi y == x^, y = 4:X— 3 with reference

to the same set of axes (Fig. 59). We see that the two graphs

intersect in two points, the coordinates of

which satisfy both equations. Therefore the

abscissas of these points are values of x

which make the right-hand members equal,

i.e., for which
0^2 = 4a; -3

or

a;2_ 4a; 4.3^:0.

The roots are seen to be 1 and 3.

If the line and the parabola were tangent, what would you

say concerning the roots ? If the line and parabola do not

meet, what would you say concerning the roots ?

This problem may be solved graphically in

an entirely different way. We will plot the

curve y =zx^ — 4:X-{-3 (Fig. 60). The abscissas

of the points where this graph meets the a?-axis

are roots of the original equation. Why ?

Describe the roots if the parabola touches

the ic-axis. What would you say concerning the roots if the

parabola did not meet the ic-axis ?

Fig. 59

Fig. 60
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85. General Theorems. 1. If r is a root of the equation

ax"^ 4- 6a; + c = 0, then x — r is a factor of ax"^ -{-hx -\- c.

Dividing ax"^ + hx -[- chy x — r, we obtain :

X — r\ ax^ -\-hx + c

\

ax -\-{}j -\- ar)

ax"^ — arx

{b -h ar) X -\- c

(b 4- ar) x — {b + ar) r

c -{- br -\- ar"^'

Therefore

ax"^ -\-bx -\- c= [cix + {b -\- ar)']\x — r] + c + 5r + ar^.

But, by hypothesis, r is a root ; therefore, ar"^ + br + c = 0\

hence
ax^ -\-bx -{- G = \_ax -\-{b -\- ar)'][_x — ?-].

2. Prove that ifx — r is a factor of ax"^ -\-bx -\- c, then x = r

is a root of ax^ -\- bx + c = 0.

3. Prove that if the expression ax^ -\- bx -\- c is divided by

X — r, the remainder is ar^ -\- br -\- c.

The Discriminant of the Quadratic. In § 83 we saw

that the roots of the equation ax^ -{- bx -\- c = are

-6+V62-4ac ^^^ -b -V62_4(^c

The expression under the radical, namely, &2 _ 4 qc^ is called

the discriminant of the equation, because it enables us to dis-

criminate as to the nature of the roots. From geometric con-

siderations we know that a quadratic equation with real

coefficients a, b, c may have either two real distinct roots, two

real equal roots, or no real roots at all. The above formula

enables us to see the same truth algebraically.

If b^ — 4:ac = 0, we say that there are two real and equal

roots, each being — 6/2 a.

If 52 _ 4 fl(< -> 0, there are two real and unequal roots.
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If 62 _ 4 ac< 0, there are no real roots. The roots of such

an equation are called imaginary or complex. The properties

of such numbers will be discussed fully in Chap. XVIII.

If the discriminant b^ — A ac is a perfect square and the

coefficients a, b, c are rational numbers, then the roots are

rational.

By finding the value of the discriminant we may determine

the nature of the roots of the quadratic without solving the

equation. Thus, in the equation Sx'^-i-ix — 3 = 0, the dis-

criminant is 52 and we conclude that the roots are real, un-

equal and irrational.

Eelation of Roots to Coefficients. Let the roots of the

equation ax- -f- 6a; -f c = be denoted by /•, and ra . That is, let

— 64-V62 — 4ac „ 1
—b — Vb"^ — 4 ac

and ?'2 =
2a 2a

By addition we have

-5.|-V52_4qe-5-V6'^-4ac _ 2b_ b
'*^ + '*^- ""

2a ~ 2a~ a

By multiplication we have

_ r(- b)-^¥ - 4 ac\\{- b)+^¥ - 4 ac']
'"''''-

4a^

_ 6^^ — 6^ 4- 4 ac_ c

~ 4a2 a

Therefore, if we write the quadratic equation in the form

x^-\-^x + -=0,
a a

the above results may be expressed as follows :

In a quadratic equation in ivhicJi the coefficient of the x^ term

is unity, (/) the sum of the roots is equal to the coefficient of x

with the sign changed; (ii) the product of the roots is equal to

the constant term.
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EXERCISES

Solve graphically (two ways) each of the following equations :

1. 2x2 -|-5x- 3:^0. 3. 12-a; = a;2. 5. 4-x2 = 0.

2. a;2-8x + 15=0. 4. 2x2-3x-5=0. 6. 4 + x2 = 0.

Form the equations with the following roots :

7. 4,-5. Ans. x2+x-20:=0. 9. 2+V5, 2-V5.

8. V7, - V7. 10. c + 3 &, c - 3 b.

11. What is the remainder when 3x2 — 2x + 5=0 jg divided by

x-3? byx + 2? byx-1? by-x+1? [Hint : Use 3, § 85.]

Determine, the nature of the roots of the following equations :

12. 7x2_5x = 6. 14. 2 1/2 + 3 2/ + 24 = 0.

13. 2x = 7-3x2. 15. 9x2 = 4x-5.

Determine k so that the following equations shall have equal roots.

[Hint : Place b'^ — iac equal to zero.]

16. kx^ - 6 x+ 3= 0. Ans. k=S. 18. x^ + 2 {1 -^ k)x -{- k^ = 0.

17. 3iK2-4^•x+ 2 = 0. 19. 2Arx2+(5A:+ 2)x+4^ + l=0.

20. Determine the limits on k so that equations 16-19 shall have their

roots real and unequal ; imaginary and unequal.

21. If X is real, show that ~ must lie between and 1.

a;2-5x + 9 11

22. A party of students hired a coach for ^ 12, but three of the students

failed to contribute towards the expense, whereupon each of the others

had to pay 20 cents more. How many students were in the party ?

23. Cox's formula for the flow of water in a long horizontal pipe con-

nected with the bottom of a reservoir is

Hd^ iv^ + ^^v-2
' L 1200

where H is the depth of the water in the reservoir in feet, d the diameter

of the pipe in inches, L the length of the pipe in feet, and v the velocity

of the water in feet per second. If a reservoir contains 49 ft. of water,

find the velocity of the water in a 5-inch pipe that is 1000 ft. long.

24. It takes two pipes 24 minutes to fill a certain reservoir. The larger

pipe can fill it in 20 minutes less time than the smaller. How long does

it take each pipe to fill the reservoir ? Ans. 60 min. ; 40 rain.

25. Prove algebraically and geometrically that if h^ — ^ac<:iQ^ the

value of the function ax^ + &x -f c is positive for all (real) values of x,

if a > ; and negative for all (real) values of x, if a < 0.
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86. Equations involving Radicals. The method of solving

problems involving radicals will be illustrated by some

examples.

Example 1. Solve Va; + ^ - 2 (a; — 1)= 0.

Transposing the second term to the right-hand member gives

V»T2 = 2(x- 1).

Squaring,

x-\-2=^4.x'^-Sx-\-4:, or 4a.'2 -9 a; -f- 2 = 0.

Whence
, a; = 2, or i.

Do both these values satisfy the equation?

We have shown that, if VicH-2 — 2 (ic— 1)=0, then x = 2

or J.
But we cannot conclude conversely, that if a; = 2 or \,

then VxT2 - 2 (it- - 1) = 0.

In fact, if we substitute the values of x found in the original

equation, we find that a; = 2 is a root ; but a; = ^ is not.

Example 2. Solve the equation Va; + 8 + Vx + 3 = 5 Vx.

Squaring both sides, we find

a; -f 8 + 2Va;2-f llaj-f 24 + x + 3 = 25a;,

or

2 Va;2+ 11 a; + 24 = 23 x - 11

;

whence squaring, collecting terms, dividing by 25, we have

21 a;2 - 22 a; + 1 = ;

therefore, a; = 1 or ^V-

What are the roots ?

EXERCISES

Solve each of the following equations :

1. Vic - 2 - 3 = 0. 4. - \/4 X - 3 - Vx + 1 = 1.

2. >/x-2-(-3 = 0. 5. v'x+5+ Vx+10=v2x+ 15.

Ans. No roots. $. Vx4- b+ Vx-\- a = V2x+a+ b.

3. Vx~+2-VxTT = - 1. 7. V2 X + 6 - Vx + 4 = Vx - 4.

Ans. 2. 8. Vx+3 - V4 x + 1 = V2 - 8 x.
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MISCELLANEOUS EXERCISES

Determine the condition existing among a, 6, c so that the equation

ax'^ + bx + c = shall have :

1. One root double the other. Ans. 2b^ = 9 ac.

2. The roots reciprocals of each other. Ans. a = c.

3. One root three times the other.

4. One root n times the other.

5. One root zero. Ans. c = 0.

6. One root equal to 1 ; 2 ; 3 ; n.

7. The roots numerically equal but opposite in sign. A7is. 6 = 0.

8. Find the area of the largest rectangle that can be inscribed in a

triangle whose base is 20 inches and whose altitude is 15 inches, if one

side of the rectangle is along the base of the triangle.

9. Separate twenty into two parts such that the product of half of one

part by a quarter of the other shall be a maximum.

10. Solve the equation y^ — Sy"^ -^ \b = 0. [Hint : Let y^ = x.]

11. Solve the equation fa; + - 1 + T^ + ^1 — 12 = 0.

12. Solve the equation x^ + 8 x + 3V^ + 8x4-2= 8.

13. Solve the equation — ^^^ = — •

x + l x-^ 12

14. Find k so that the roots of {k + 2)x^ — 2 A;x + 1 = are equal.

15. Without solving, determine the sum and product of the roots of each

of the following equations :

(a) 2.r2_7x-3 = 0. , (c) 4ic2 _ 3^: + 1 =0.

(6) x2 - 4 X + 2 = 0. (d) 2 a;2 + .3 x + 4 = 0.

16. Determine k so that the sum of the roots of the equation

2x2+(A-- l)x+(3A: -7) = 0is4. Ans. k = -l.

17. Determine k so that the product of the roots of the equation

(2 A; - 1) x2 + (A; + 3) » + (A;2 - 2 A; + 1) = is 2.



CHAPTER V

THE CUBIC FUNCTION. THE FUNCTION a^

87. The General Cubic Function ax^ -f- bx"^ -\- ex -\- d. Hav-

ing discussed in the last chapter the general quadratic function

ax^ -{-bx -\- c, we now turn our attention to

the general algebraic function of the third

degree, i.e. the general cubic function. It

is of the form

OQ^ -\- bx^ -\- ex + dj a=^ 0.

88. The Function ^. We begin with

the consideration of the function y = a^.

A brief tabular representation of this

function is given below.

We note that the values of x^

for negative values of x are the

same in absolute value as those

for the corresponding positive

values, but negative. If the

corresponding points are plotted

with respect to a pair of rec-

tangular axes, we obtain Fig. 61.

The change Ay in y due to a

change Ax in x is calculated as follows, where x^ and y^ are

any pair of corresponding values of x and y

:

(1) y^ + Ay = x^ + 3 a;i2 . Aa; H- 3 x^^'^ + Aa^.

K 129

X a;3

0.00

.5 0.12

1.0 1.00

1.5 3.36

2.0 8.00

2.5 15.62

3.0 27.00

^j^

x

in

\
' '

--3^'Alh --Jr-S^S--^

Fig. 61



130

Since

this gives

(2)
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A?/ = (3 x^^ + 3 x^^x + Aa;2) Aa;.

We can now conclude that as Aa; approaches zero, Ay also

approaches zero ; i.e. the function is continuous for all values

of X. From (2) we obtain

(3) ^ = 3a;i2-j-3a^iAa; + Aa-2
Ao;

(if Ax z^ 0).

As Aaj (and, therefore, also A?/) approaches 0, this change ratio

approaches 3 x^. The slope m of the graph at the point {x^
, y^

is, therefore.

(4) m = ^x^\

This slope is positive for all values of Xy^

except a?! = 0. Why ? The function is

therefore an increasing function for all

values of x except a? = 0, i.e. at the origin,

where the graph of the function is tangent

to the X-axis. The graph is exhibited in

Fig. 62, where we have drawn at certain

points the tangents to the graph by means

of (4) in order to insure greater accuracy.

- i^ :: J:::::1 -L- .-± JL ::

-"M : 3^:::::
di T

::^ : :t:::::
«' , i'-%

"r ' jL

Jrf T '1- e> 9 7: '.

:. ::::?_>:3 ^-4i5-

/ -^ _.
it >

"L— ":::: ::

:: : -!«!: ::::: ::

Fig. 62
89. The Functions ax^ and a{x - hf + ft.

From the results of the last article and the

general principles previously established, we conclude that the

graph of the function

y = ay?

is obtained from that of 2/ = a^ by stretching or contracting all

the ordinates in the ratio
|

a
|

: 1, according as \a\ is greater

than 1 or less than 1, and in case a is negative reversing the
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signs of all the ordinates (Fig. 63).* Explain the reason for

this result.

The function y == a{x ~ Tif -{- k may be written in the form

y — 7c = a{x — hy.

Its graph is accordingly (§ 78) obtained from that of ?/ = aa^

by sliding the latter graph through a distance and in a direc-

y=a(z-h)3 + k

Fig. 64

tion represented by the motion from (0, 0) to (7 = {h, 7c). Ex-

plain the reason for this (Fig. 64).

The slope of y = aa^ at the point (xi, y{) is 3 axi^. The slope

of a (a; - hy+ k at the point {x^, y{) is Sa{xi- hy. The proof

of these statements is left as an exercise.

EXERCISES

1. From the graph of the function y — cc^, determine the volume of a

cube whose edge is 0.5 in. ; 0.5 ft. ; 3 ft. ; 1.5 cm.

2. Find the equation of the tangent and the normal to the curve y =.3^

at the point (2, 8) ;
(_ 1, _ 1) ; (0, 0) ;

(- 2, - 8).

3. Draw each of the curves y= -x^, y=4i x^, y=S(x-iy, y=2(x-\-iy

* For example, if the unit on the y-scale of Fig. 62 be doubled (i.e. made

equal to the a;-scale) while the curve is left unaltered, the graph there given

will be the graph of y = i cc^.
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4. Show that the slope oiy = — ax^ at the point (xi, 2/1) is — 3 axi^.

6. Discuss the locus of y = — xK

6. Discuss the locus of y =— ax^ if a is positive and greater than 1
;

less than 1. Show that the same curve will serve as the graph for all

values of a > if the units on the axes are properly chosen.

90. The Addition of a Term mx. Shearing Motion. If to

an expression in x defining a function, a term of the form mx
be added, the effect on the graph is readily described in terms

of a type of motion that is important in mechanics. For ex-

ample, let us take the function a^ and investigate the effect

produced upon the graph by adding the

term —Sx. The graphs of y = a^ and

y=:—Sx are dravm in Fig. 65. The graph

of y = a^ — Sx is then obtained by adding

^ /" \-A=r?--5a the corresponding ordinates of the former

/ ^ graphs. The addition of these two func-

tions is obtained graphically by sliding the

ordinate of each point on y = a^ vertically

up or down until the base of that ordinate

meets the graph of y =: — Sx. If we think of the ordinates

of 2/ = 25^ as attached to the avaxis and constrained to remain

vertical, the graph of y = a^ will become the graph of

y = a^ — 3x if the a>axis is rotated about the origin until it

coincides with the line y = — Sx. The resulting graph of

2/ = 0? — 3 a; is, of course, to be interpreted as drawn with ref-

erence to the original a>-axis. The motion just described,

whereby y = 0^ is transformed into y = a^ — Sxj is called a

shearing motion or a shear with respect to y = — Sx.

In general, if the term mx is added to aa^, the graph of the

function cta^ -{-mx is obtained by subjecting the graph of cue*

to a shear with respect to the line y = mx. .If a and m have

the same signs, the effect is in the direction of straightening
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the graph ; if a and m have different signs, the effect is in the

direction of emphasizing the curvature.

These effects can be produced by drawing the original figure

on the edges of a pack of cards, or on the edges of a book, and

then shifting the cards (or sheets of paper) as shown in Fig. 66.

EXERCISES

Draw the graph of the following functions, making use of the shear :

1. y = Sx'^ + x. 5. y=:ic8 + x-l.

2. ?/ = x2 + X. B. y=-x^ + x-^2.

3. y=-x^-x. 7. y = x^-l.

4. y = - 2 x3 + 4 x. 8. y = x2 - 4 X.

9. Show that y = mx is the equation of the tangent to the curve

= x^ 4- mx at the origin.
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91. The Functions a(x - hf + m{x - h)-\- k and ax^ + bx^

-{- cx + d. We have seen that the graph of

(6) y = ax^ -f mx

has one of the following forms (Fig. 67) according to the signs

of a and m.

If such a graph is subjected to a parallel motion which

Fig. 67

carries the origin to the point {h, k), the equation of the graph

in its new position is (§ 78)

(6) y — k = a{x — hy -\-m{x— h),

which when expanded takes the form

(7) 2/ = «^' — 3 ahx^ + (3 ah^ -\-m)x— ah^ — mh -f k.

This is of the general form

(8) y =z ao? -^ hx^ -[- ex + d.
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Moreover, it includes for all values of 7i, k, m all the equations

of the general form (8). For (7) and (8) will be identical if

(9) - 3 aA = 6, 3 a/i2 -(- m = c, - ah^ - mh -{- k = d.

The first of these equations determines h(a^O) ; h being

known, the second equation determines m; m and h being

known, the third equation determines k. We may conclude

then that the graph of any function of the form (8) has one of

the shapes given in Fig. 67, but with the origin moved to a

point {h, k) given by the equations (9).

In order to draw the graph of a function of the form (8)

we could first transform (8) into the form (6) and then pro-

ceed as in § 90. It is more expeditious, however, to proceed

more directly by making use of the slope of the function (8)

and our knowledge of what shapes may be expected.

92. The Slope of y = ax^ + bx^ -\-cx + d. The change Ay

in y due to a change Ax in the function

y = aa^ -\- bx^ -{-ex -j- d,

when a; = aji , is

Ay = (3 axi^ -{- 2 bx^ -\- c -\- 3 ax^Ax +- bAx -f aAx'^) Ax.

This equation shows that the graph is continuous. Why?
When Ax approaches 0, the change ratio Ay/Ax approaches

the slope m, by definition. This gives,

93. To draw the Graph of y = aj^ -h bx^ -\- ex -{- d. We
shall illustrate by means of two examples the method of draw-

ing the graph of a cubic function.
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Example 1. Draw the graph oi y = a^ + x'^ — x + 2.

The slope m at the point (a;i, yi) is (§ 92)

m = S Xi^ -\- 2 Xi — 1.

We seek first the points (if such exist) at which the tangent

is horizontal, i.e. where m = 0. The roots of the equation

m = 0, viz.

3a;i2 + 2a;] -1 =

are Xi = — 1 and Xi = -|. The slope is therefore at the

points (-1,3) and (^, If).

We now compute a table of corresponding values of x, y, m
for values of x on both sides of and between x — 1 and x = ^.

Such a table and the corresponding figure are given below.

X y m

-3
-2

- 13 20

7

-1 3

2 -1

1

If
3 4

2 12 15

Fia. 68

Example 2.* Draw the graph of y = — a^ — Sx^ — Sx-^-l.

The slope at the point where x = Xi is

(3a;i2 + 6aJi + 5).m

Since the roots of the equation 3 iCi^ -f 6 cci + 5 = are im-

aginary, the graph has no horizontal tangents and the slope m
is negative at every point. We accordingly make a table of

values and construct the graph (Fig. 69).
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X y m

-8 16 -15
-2 7 - 5

-1 4 - 2

1 - 5

1 -8 -14

Fia. 69

94. Maxima and Minima. We extend our definition of

maximum and minimum given in § 75 as follows

:

A value of x for which a function stops increasing and

begins to decrease is said to correspond to a maximum of the

function ; a value of x for which the function stops decreasing

and begins to increase is said to correspond to a minimum of

the function. Thus in Ex. 1, § 93 the value x = —1 corre-

sponds to the maximum 3 of the function ; the value a; =
-J

corresponds to the minimum ^ of the function.*

EXERCISES

Draw the following curves and locate in each case the maximum and

minimum points if there are any :

6. y = oc^ \- X + 1.

7. y = oc^_.

8. y = x^ — X.

9. y =z x^ + 2 x"^ -h X.

1. y = x^ + x^.

2. v=f-5|!-a..,

3. y^X^- — -2x-\-\'

4. y = x^-x'^-5x+2.

6. y = 2a;8 4-^-4x + l. 10. y cfi -x^ -\-x—l.

* Note that a maximum of a function does not mean the greatest value a

function can assume. In Ex. 1, § 93, the value of the function is greater when

x = 2 than when x = —l. It does mean a value of the function which is

greater than the values in the immediate neighborhood.
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95. Geometric Problems in Maxima and Minima. The

theory just explained has an important application in solving

problems in maxima and minima, i.e. the determination of the

largest or the smallest value a magnitude may have which

satisfies certain given conditions.

As we saw in § 80, the first step is to express the magnitude

in question algebraically. If the resulting expression contains

more than one variable, other conditions always will be given

which will be sufficient to express all of the variables in terms

of one of them. When the magnitude in question is expressed

in terms of one variable, we can proceed as in § 92 to find any

maximum or minimum values which there may be.

Example 1. Find the greatest cylinder that can be cut

from a given right circular cone, whose height is equal to the

diameter of its base.

Fig. 70

Let li be the given height of the cone and x and y the un-

known dimensions of the cylinder (Fig. 70). Then the volume

V of the cylinder is equal to irx^y. But from similar triangles

we have
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Therefore,

whence

Now
F= TTxXh -2x) = Trhx^ - 2 no^,

m = 2 irhx — 6 ttx^.

The roots of the equation m = are a; = and x =h/S.

It is left as an exercise to draw the graph of the function

V = Trhx" - 2 TTCl^

and show that the value x = h/3 corresponds to the maximum
of the function, i.e. to y = h/S. Therefore the maximum
volume of the cylinder is obtained when the altitude is equal

to the radius of the base. The maximum volume is 7r^'/27

or 12/27 of the volume of the cone.

EXERCISES

1. A square piece of tin, the length of whose side is a, has a small

square cut from each corner and the sides are bent up to form a box.

Determine the side of the square cut away so that the box shall have the

maximum cubical contents, Ans. a/6.

2. Assuming that the strength of a beam with rectangular cross section

varies directly as the breadth and as the square of the depth, what are

the dimensions of the strongest beam that can be sawed from a round log

whose diameter is d. Ans. Depth = Vf d.

3. Find the right circular cylinder of greatest volume that can be in-

scribed in a right circular cone of altitude h and base radius r.

Ans. Radius of the base of the cylinder equals f r.

4. Equal squares are cut from each corner of a rectangular piece of

tin 30 inches by 14 inches. Find the side of this square so that the re-

maining piece of tin will form a box of maximum contents.

5. Show that the maximum and minimum points on the curve

y = x^ — ax + 6 (a > 0) are at equal distances from the y-axis.

6. Find the maximum volume of a right cone with a given slant

height L.
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96. The Power Function. The functions x" and l/a;», where

n is any positive integer, are called power functions of x. The

curves y = .t'» (Fig. 71) are known as parabolic, while the curves

y = l/iC* (Fig. 72) are known as hyperbolic.

The curves of the parabolic type possess the property that

they all pass through the point (0, 0) and the point (1, 1).
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The larger the value of n, the greater is the slope of the tan-

-^ent at the point (1, 1).

The curves of the hyperbolic type all pass through the

point (1, 1). As X approaches 0, the corresponding value of y

becomes infinite. At a; = the value of y is undefined. As x

becomes infinite, the corresponding value oiy approaches 0.
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EXERCISES

1. Draw the curves y =x^\ y = x^
; y = x^; y = x^.

2. Draw the curves y = l/x; ?/ = l/x^
; y = 1/x^

; y = 1/ic*.

3. Prove that the slope of the tangent at the point (1, 1) to the curve

y = x2, is 2 ; to the carve y—x^ is 3 ; to the curve y=x^ is 4 ; lo the curve

y = x^ is 5.

4. Prove that for every even value of n, the parabolic curves
' ?/ = x"

pass through the point (- 1, 1); and that for every odd value of n, they

pass through the point (— 1, — 1).

6. Prove that the function x^ is an increasing function for all values

of x.

6. Find the equation of the tangent and the normal to y = ar^ at the

point (2, 32).

7. Prove that the slope of the curve y = 1/x at the point (xi, yi) Is

— 1/xi*. [The curve y — l/x is called a hyperbola.']
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ace* be obtained from the8. How can the graph of the function y

graph of y = x" if a is positive ? negative ?

9. Find the equation of the tangent and the normal to the curve

y = l/a:2 at the point (2, \)

.

10. Prove that all hyperbolic curves lie within the shaded regions of

the adjoining figure, while all parabolic curves lie in the regions left

unshaded.



CHAPTER VI

THE TRIGONOMETRIC FUNCTIONS

97. The functions we have discussed hitherto, namely, the

functions of the form mx i-b, ax^ -^bx -\- c, ax^ + bx"^ + ex -\- dj

have all been defined by means of explicit algebraic expres-

sions. They are all examples of a very large class of functions

known as algebraic functions. We now turn our attention to

functions defined in an entirely different way. As we shall

see, these functions depend on the size of an angle. They

enable us to express completely the relations between the

sides and the angles of a triangle, and they are of the

greatest practical importance in surveying, engineering, and

indeed in all branches of pure and applied mathematics.

98. Directed and General Angles. In elenJentary geometry

an angle is usually defined as the figure formed by two half-

lines issuing from a point. However, it is often more serviceable

to think of an angle as being generated

by the rotation in a plane of a half-line

OP about the point as a pivot, start- y^ \

ing from the initial position OA and / ^^-^"'^
\

ending at the terminal position OB (Fig.

73). We then say that the line OP has

generated the angle AOB. Similarly, if OP rotates from the

initial position OB to the terminal position OA, then the angle

BOA is said to be generated. Considerations similar to those

regarding directed line segments (§ 6) lead us to regard one of

143
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the above directions of rotation as positive and the other as

negative. It is of course quite immaterial which one of the

two rotations we regard as positive, but we shall assume from

now on, that counterclockwise rotation is

positive and clockwise rotation is negative.

Still another extension of the notion

of angle is desirable. In elementary

geometry no angle greater than 360°

is considered and seldom one greater than 180°. But from the

definition of an angle just given, we see that the revolving

line OP may make any number of complete revolutions before

coming to rest, and thus the angle generated may be of any

magnitude. Angles generated in this way abound in practice

and are known as angles of rotation.^

When the rotation generating an angle is to be indicated, it is

customary to mark the angle by means of an arrow starting at

the initial line and ending at the terminal line. Unless some

such device is used, confusion is liable to result. In Fig. 75

e^ 0^ Q
30' 390" 750' lilO

FiQ. 75

angles of 30°, 390°, 750°, 1110° are drawn. If the angles were

not marked one might take them all to be angles of 30°.

99. Measurement of Angles. For the present, angles will be

measured as in geometry, the degree (°) being the unit of measure. A
complete revolution is 360°. The other units in this system are the

minute ('), of which 60 make a degree, and the second ("), of which 60

make a minute. This system of units is of great antiquity, having been

* For example, the minute hand of a clock describes an angle of — 180®

in 30 minutes, an angle of — 540° in 90 minutes, and an angle of —720° in

120 minutes.
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used by the Babylonians,* The considerations of the previous article then

make it clear that any real number, positive or negative, may represent an
angle, the absolute value of the number representing the magnitude of

the angle, the sign representing the direction of rotation.

100. Angles in the Four Quadrants. Consider the angle

XOF = e, whose vertex O coincides with the origin O of a system of rec-

tangular coordinates, and whose initial line OX coincides with the positive

-p^Y-. -0^^

Fig. 76

half of the x-axis (Fig. 76). The angle d is then said to be in the first,

second, third, or fourth quadrant, according as its terminal line OP is in

the first, second, third, or fourth quadrant.

101. Addition and Subtraction of Directed Angles. The
meaning to be attached to the sum of two directed angles is analogous to

that for the sum of two directed

line segments. Let a and h be

two half-lines issuing from the

same point and let (a&) repre-

sent an angle obtained by rotat-

ing a half-line from the position

a to the position 6. Then if we
have two angles (a&) and (6c) with the same vertex 0, the sum (a6)-|-(6c)

of the angles is the angle represented by the rotation of a half-line from

the position a to the position h and then rotating from the position 6 to the

position c. But these two rotations are together equivalent to a single rota-

tion from a to c, no matter what the relative positions of a, &, c may have

* The terms minutes and seconds are derived from their Latin names, which
are partes minutss primse and partes minutx secundss. At present there is

a slight tendency among some authors to divide the degree decimally instead of

into minutes and seconds. Still other authors use the degree and minute and
divide the minutes decimally. Exercises involving both these systems will be

found in the text. When the metric system was introduced at the end of the

eighteenth century it was proposed to divide the right angle into 100 parts, called

grades. The grade was divided into 100 minutes and the minute into 100 sec-

onds. This system is used in some European countries, but not at all in America.
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been. Hence, we have for any three half-lines a, 6, c issuing from a point 0,

(1) (a&) + (6c) = (ac), (ab) + (&a) = 0, (ab) = (cb)-(ca).

The proof of the last relation is left as an exercise.

These relations are analogous to those of § 35 ; but an essential difference

must be noted. Given two points A and 5 on a line, we may speak of the

directed segment AB. The measure of AB is completely determined

when A and B and the unit of measure are given.

But if the half-lines a and b are given, the angle

(ab) may be any angle generated by a rotation from

a to 6. Such angles may be positive or negative and

may involve, in addition to the minimum rotation

from a to &, any number of complete revolutions.

It is to be noted, however, that all possible determi-

nations of the angle (ab) differ among themselves only by integral multi-

ples of 360°. In other words, if 6 represents the smallest positive measure

(in degrees) of an angle from a to b, then any determination of (ab) is

given by the relation (ab) = 6 ± n- 360° (n an integer). The equality

signs in relations (1) are then to be interpreted as meaning eqtial, except

for multiples o/360°.

If the position of the half-line h is determined by

the angle di which it makes with a given horizontal line

OX, and the position of another half-line h is deter-

mined by the angle 62 which it makes with OX we have

angle from Zi to ^2 = 60 — 61 ,

except for multiples of 360°. Why ?

EXERCISES
1. What angle does the minute hand of a clock describe in 2 hours and

30 minutes ? in 4 hours and 20 minutes ?

2. Suppose that the dial of a clock is transparent so that it may be read

from both sides. Two persons stationed on opposite sides of the dial ob-

serve the motion of the minute hand. In what respect will the angles de-

scribed by the minute hand as seen by the two persons differ ?

3. In what quadrants are the following angles : 87° ? 135°? - 326° ?

540°? 1500°? -270°?

4. In what quadrant is 6/2 if ^ is a positive angle less than 360° and in

the second quadrant ? third quadrant ? fourth quadrant ?

5. By means of a protractor construct 27°-}- 85° -f (—30°) -f 20°-|- (— 45°).

6. By means of a protractor construct — 130° -\- 56° — 24°.
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102. The Sine, Cosine, and Tangent of an Angle. We
may now define three of the functions referred to in § 97. To
this end let 9 = XOP (Fig. 80) be any directed angle, and let

O X ^

Fig. 80

w T^

US establish a system of rectangular coordinates in the plane

of the angle such that the initial side OX of the angle is the

positive half of the i»-axis, the vertex being at the origin and

the i/-axis being in the usual position with respect to the

aj-axis. Let the units on the two axes be equal. Finally, let

P be any point other than on the terminal side of the angle

6, and let its coordinates^ be («, y). The directed segment

OP = r is called the distance of P and is always chosen posi-

tive. The coordinates x and y are positive or negative accord-

ing to the conventions previously adopted. We then define

ordinate of P yThe sine of 9

The cosine of d =

The tangent of Q =

distance of P
abscissa of P
distance of P
ordinate of P

provided x =^ 0,*
abscissa of P

These functions are usually written in the abbreviated forms

sin 0, cos 6, tan 6, respectively ; but they are read as " sine 0/^

" cosine 6/^ " tangent ^." It is very important to notice that

the values of these functions are independent of the position

of the point P on the terminal line. For let P{x', y') be any

other point on this line. Then from the similar right triangles

* Prove that x and y cannot be zero simultaneously.
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xyr* and a;'?/'r' it follows that the ratio of any two sides

of the triangle xyr is equal in magnitude and sign to the

ratio of the corresponding sides of the triangle xfy'r\ There-

fore the values of the functions just defined depend merely

on the angle 6. They are one-valued functions of 6 and are

called trigonometric functions.^

Since the values of these functions are defined as the ratio

of two directed segments, they are abstract numbers. They

may be either positive, negative, or zero. Eemembering that r

is always positive, we may readily verify that the signs of the

three functions are given by the following table.

Quadrant

Sine

Cosine

Tangent

l'

+
+
+

2

+
3

+

4

103. Values of the Functions for 45°, 135°, 225°, 315°. In

each of these cases the triangle xyr is isosceles. Why?
Since the trigonometric functions are independent of the

position of the point P on the terminal line, we may choose

the legs of the right triangle xyr to be of length unity, which

^ j^l
P'

FiQ. 81

gives the distance OP as V2. Figure 81 shows the four angles

* Triangle xyz means the triangle whose sides are x,y,z.

t Trigonometric etymologically means relating to the measurement

of triangles. The connection of these functions with triangles will appear

presently.
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with, all lengths and directions marked. Therefore,

sin 45'=-^,
V2

sin 135°

sin 225^

V2'

sin 315° =

V2'

vr

cos 45°= "
,

V2'
tan 45° = 1,

cos 135°= ^
,

V2
tan 135° - - 1,

cos 225°= ^
,

V2 .

tan 225° = 1,

cos315°=-i:„ tan 315° = - 1.

V2^

104. Values of the Functions for 30°, 150°, 210°, 330°. From

geometry we know that if one angle of a right triangle con-

tains 30°, then the hypotenuse is double the shorter leg,

which is opposite the 30° angle. Hence if we choose the

shorter leg (ordinate) as 1, the hypotenuse (distance) is 2,

Jft' £n<^:^
v^ •VJ

.^^'

330

Fig. 82

and the other leg (abscissa) is V3. Figure 82 shows angles of

30°, 150°, 210°, 330° with all lengths and directions marked.

Hence we have

sin 30° =i cos 30° = Y, tan 30°=-^,
V3

sin 150° =i cos 150° =-^, tan 150° =-—,
V3

sin 210° =

-

1

2'
cos 210°=-^, tan210°=-J:^,

V3

sin 330°=- 1

2'
cos 330° = ^^, ton 330° = --^.

V3
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105. Values of the Functions for 60°, 120°, 240°, 300°. It is

left as an exercise to construct these angles and to prove that

sin 60° =

sin 120° =

sin 240° = -

sin 300° = -

106. Applications. The angle which a line from the eye to

an object makes with a horizontal line in the same vertical

plane is called an angle of elevation or an angle of depression.

V3
2

'
cos 60° = L

2
tan 60°= a/3,

V3
>

2
cos 120° = -1, tan 120° -^ - V3,

V3
2

'
COS 240°=-

^,
tan 240° = v'3.

V3
2

'
cos 300° =|,

2
tan300° = -V3.

C^
Horizontal

^.^^^"'"""
Fia. 83Horizontal

^^^

according as the object is above or below the eye of the observer

(Fig. 83). Such angles occur in many examples.

Example 1. A man wishing to know the distance between two points

A and B on opposite sides of a pond, locates a point C on the land (Fig.

84) such that ^C = 200 rd., angle G — Z^\ and angle B = 90°. Find the

distance AB.

^=sin(7. (Why?)
AG
AB=AC sin a

= 200 . sin 30°

= 200 . I = 100 rd.

Example 2. Two men stationed at points A and C 800 yd. apart and

in the same vertical plane with a balloon B, observe simultaneously the

angle of elevation of the balloon to be 30° and 45° respectively. Find the

height of the balloon.

Solution :

Fia. 84
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Solution : Denote the height of the balloon DB by y, and let DC = x
then AD = 800 - x.

tan 45° = 1, we have 1 = ^
X

Since

and since tan 30° = 1/ V3, we have
V3 800 - X

Therefore oc = y and 800 — x = y \' 8.

800
Solving these equations for y, we have

V3+ 1

292.8 yd.

EXERCISES

1. In what quadrants is the sine positive ? cosine negative ? tangent

positive ? cosine positive ? tangent negative ? sine negative ?

2. In what quadrant does an angle lie if

(a) its sine is positive and its cosine is negative ?

(6) its tangent is negative and its cosine is 'positive ?

(c) its sine is negative and its cosine is positive ?

(d) its cosine is positive and its tangent is positive ?

3. Which of the following is the greater and why : sin 49° or cos 49° ?

sin 35° or cos 35° ?

4. If 6 is situated between 0° and 360°, how many degrees are there in

6 if tan ^ = 1 ? Answer the similar question for sin = ^ ; tan ^ = - 1. •

5. Does sin 60° = 2 • sin 30° ? Does tan 60° = 2 • tan 30° ? AYhat

can you say about the truth of the equality sin 2 ^ = 2 sin ^ ?

6. The Washington Monument is 555 ft. high. At a certain place in

the plane of its base, the angle of elevation of the top is 60°. How far is

that place from the foot and from the top of the tower ?

7. A boy \vhose eyes are 5 ft. from the ground stands 200 ft. from a

flagstaff. From his eyes, the angle of elevation of the top is 30°. How
high is the flagstaff ?
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8. A tree 38 ft. high casts a shadow 88 ft. long. What is the angle

of elevation of the top of the tree as seen from the end of the shadow ?

How far is it from the end of the shadow to the top of the tree ?

9. From the top of a tower 100 ft. high, the angle of depression of

two stones, which are in a direction due east and in the plane of the base,

are 45° and 30° respectively. How far apart are the stones ?

^ns. 100(V3-l)=73.2ft.

10. Find the area of the isosceles triangle in which the equal sides

10 inches in length Include an angle of 120°. Ans. 25VS = 43.3 sq. in.

11. Is the formula sin2 ^ = 2 sin ^cos ^ true when = 30°? 60°?
120^^^^ ?

12. From a figure prove that sin 117° = cos 27°.

13. Find the tangent of the angle which the line joining the points

(^1) yi)i and (X2, Vi) makes with the aj-axis, assuming the units on the

two axes to be equal. Compare your answer with the definition of slope

in §§ 50 and 53.

14. Determine whether each of the following formulas is true when
e = 30°, 60°, 150°, 210° :

1 + tan2 d

1 +

cos'^ d

1 1

tan2 d sin2 0'

sin2 + cos2 = 1.

16. Let Pi(a:i, yi) and P2(a;2, 2/2) be any two points the distance be-

tween which is r (the units on the axes being equal). If is the angle

that the line P1P2 makes with the cc-axis, prove that

X2-X1
J

y2 - yi ^ 2 r.

cos 6 sin 6

107. Computation of the Value of One Trigonometric

Function from that of Another.

Example 1. Given that sin = f , find the

6y\ hs5
values of the other functions.

XB I _J__1^^ Since sin 6 is positive, it follows that d is

an angle in the first or in the second quad-

rant. Moreover, since the value of the sine

is I, then y = Z - k and r = 6 •% where k is

any positive constant different from zero. (Why ?) It is, of course,

immaterial what positive value we assign to A;, so we shall assign the

Fia. 86
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value 1. We know, however, that the abscissa, ordinate, and distance
are connected by the relation x"^ + y^ = r^, and hence it follows that

X = ± 4. Fig. 86 is then self-explanatory. Hence we have, for the first

quadrant, sin ^=f, cos^=|, and tan^=|; for the second quadrant,
sin ^ = |, cos ^ = — I, tan 5 = — |.

Example 2. Given that sin d = f^ and that tan d

is negative, find the other trigonometric functions of

the angle 6.

Since sin 6 is positive and tan 6 is negative, 6 must
be in the second quadrant. We can, therefore, con-

struct the angle (Fig. 87), and we obtain sin ^ = j\,

:^1_

Fig. 87

108. Computation for Any Angle. Tables. The values of

the trigonometric functions of any angle may be computed by

the graphic method. For

example, let us find the

trigonometric functions of

35°. We first construct

on square ruled paper,

by means of a protractor,

an angle of 35° and choose

a point P on the ter-

minal line so that OF
shall equal 100 units.

Then from the figure we

find that 0M= 82 units

iind MP = 57 units.

Fig. 88 Therefore

sin 35° =^ = 0.57, cos 35° = -^\\= 0.82, tan 35° = || = 0.70.

The tangent may be found more readily if we start by tak-

ing OA — 100 units and then measure AB. In this case,

AB = 70 units and hence tan 35° = t% = ^•'^^•

It is at once evident that the graphic method, although
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10

Fig.

20 30 iO SO CO 70 60 90 100

89.— Graphical Table of Trigonometric Functions
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simple, gives only an approximate result. However, the values

of these functions have been computed accurately by methods

beyond the scope of this book. The results have been put in

tabular form and are known as tables of natural trigonometric

functions. These tables with an explanation of their use will

be found in any good set of mathematical tables.* In order

to solve several of the following exercises it is necessary to

make use of such tables.

Figure 89 makes it possible to read off the sine, cosine, or

tangent of any angle between 0° and 90° with a fair degree of

accuracy. The figure is self-explanatory. Its use is illustrated

in some of the following exercises.

EXERCISES

Find the other trigonometric functions of the angle 6 when

1. tan^ = -3. 3. cos ^= if. 6. sin^ = f.

2. sin^=-|. 4. tan^=4. 6. cos^=-^

7. sin ^ = I and cos 6 is negative.
_,

8. tan 6 = 2 and sin 6 is negative.

9. sin e = — ;^ and tan 6 is positive.

10. cos ^ = f and tan 6 is negative.

11. Can 0.6 and 0.8 be the sine and cosine, respectively, of one and

the same angle ? Can 0.5 and 0.9 ? Ans. Yes
;
no.

12. Is there an angle whose sine is 2 ? Explain.

13. Determine graphically the functions of 20°, 38°, 70°, 110°. Check

your results by the tables of natural functions.

U. From Fig, 89, find values of the following :

sin 10°, cos 50°, tan 40°, sin 80°, tan 70°, cos 32°, tan 14°, sin 14°.

15. A tower stands on the shore of a river 200 ft. wide. The angle of

elevation of the top of the tower from the point on the other shore exactly

opposite to the tower is such that its sine is |. Find the height of the

tower.

* See, for example, The Macmillan Tables, which will be referred to

in connection with this book.
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16. From a ship's masthead 160 feet above the water the angle of de-

pression of a boat is such that the tangent of this angle* is ^j. Find tlie

distance from the boat to the ship. Ans. 640 yards.

17. A certain railroad rises 6 inches for every 10 feet of track. What
angle does the track make with the horizontal ?

18. On opposite shores of a lake are two flagstaffs A and B. Per-

pendicular to the line AB and along one shore, a line BC = 1200 ft. is

measured. The angle ACB is observed to be 40° 20'. Find the distance

between the two flagstaffs.

19. The angle of ascent of a road is 8°. If a man walks a mile up the

road, how many feet has he risen ?

20. How far from the foot of a tower 150 feet high must an observer,

6 ft. high, stand so that the angle of elevation of its top may be 23°. 5 ?

21. From the top of a tower the angle of depression of a stone in the

plane of the base is 40° 20'. What is the angle of depression of the stone

from a point halfway down the tower ?

22. The altitude of an isosceles triangle is 24 feet and each of the equal

angles contain 40° 20'. Find the lengths of the sides and area of the

triangle.

23. A flagstaff 21 feet high stands on the top of a cliff. From a point

on the level with the base of the cliff, the angles of elevation of the top

and bottom of the flagstaff are observed. Denoting these angles by a
and /3 respectively, find the height of the cliff in case sin a =. ^ and

cos/3 = H. Ans. 76 feet.

24. A man wishes to find the height of a tower CB which stands on a

horizontal plane. From a point A on this plane he finds the angle of ele-

vation of the top to be such that sin CAB = f . From a point A' which

is on the line AC and 100 feet nearer the tower, he finds the angle of

elevation of the top to be such that tan CA'B — f . Find the height of the

. tower.

25. Find the radius of the inscribed and circumscribed circle of a regu-

lar pentagon whose side is 14 feet.

26. If a chord of a circle is two thirds of the radius, how large an

angle at the center does the chord subtend ?

27. A boy standing a feet behind and opposite the middle of a football

goal observes the angle of elevation of the nearer crossbar to be a, and

the angle of elevation of the farther crossbar to be p. Prove that the

length of the field is a [tan a — tan /3]/tan /3.
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109. The Sine Function. Let us trace in a general way the

variation of the function sin ^ as ^ increases from 0° to 360°.

For this purpose it will be convenient to think of the distance

r as constant, from which it follows that

the locus of P is a circle. When = 0°, the

point P lies on the x-axis and hence the

ordinate is 0, i.e. sin 0° = 0/r = 0. As ^
increases to 90°, the ordinate increases

until 90° is reached, when it becomes equal

to r. Therefore, sin 90° = r/r = 1. As ^ p^^ ^
increases from 90° to 180°, the ordinate de-

creases until 180° is reached, when it becomes 0. Therefore

sin 180° = 0/r = 0. . As ^ increases from 180° to 270°, the ordi-

nate of P continually decreases algebraically and reaches its

smallest algebraic value when = 270°. In this position the

ordinate is — r and sin 270° = — r/r = — 1. When enters

the fourth quadrant, the ordinate of P increases (algebraically)

until the angle reaches 360°, when the ordinate becomes 0.

Hence, sin 360° = 0. It then appears that

:

as 6 increases from 0° to 90°, sin increases from to 1

;

as 6 increases from 90° to 180°, sin decreases from 1 to ;

as 6 increases from 180° to 270°, sin 6 decreases from to — 1

;

as 6 increases from 270° to 360°, sin $ increases from — 1 to 0.

It is evident that the function sin 6 repeats its values in the

same order no matter how many times the point P moves

around the circle. We express this fact by saying that the

function sin 6 is periodic and has a period of 360°. In symbols

this is expressed by the equation

sin [6 + n . 360°]= sin 9,

where n is any positive or negative integer.

The variation of the function sin 6 is well shown by its



158 MATHEMATICAL ANALYSIS [VI, § 109

graph. To construct this graph proceed as follows : Take a

system of rectangular axes and construct a circle of unit radius

Fig. 91

with its center on the aj-axis (Fig. 91). Let angle XOP = 0.

Then the values of sin 6 for certain values of 6 are shown in

the unit circle as the ordinates of the end of the radius drawn

at an angle 0.

d 30° 45° 60° 90° ...

sin^ M,Pi M2P2 MsPs M,P,

Now let the number of degrees in ^ be represented by dis-

tances measured along OX. At a distance that represents 30°

erect a perpendicular equal in length to sin 30° ; at a distance

that represents 60° erect one equal in length to sin 60°, etc.

Through the points 0, Pi, P^,-" draw a smooth curve'; this

curve is the graph of the function sin 6.

If from any point P on this graph a perpendicular PQ is

drawn to the a;-axis, then QP represents the sine of the angle

represented by the segment OQ.

Since the function is periodic, the complete graph extends

indefinitely in both directions from the origin (Fig. 92).

Y
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110. The Cosine Function. By arguments similar to those

used in the case of the sine function we may show that

:

as 6 increases from 0°to 90°, the cos decreases from 1 to ;

as $ increases from 90° to 180°, the cos 9 decreases from to —1

;

as increases from 180° to 270°, the cos 6 increases from — 1 to ;

as increases from 270° to 360°, the cos increases from to 1.

The graph of the" function is readily constructed by a method

Fig. 93

similar to that used in case of the sine function. This is

illustrated in Fig. 93.

The complete graph of the cosine function, like that of the

sine function, will extend indefinitely from the origin in both

7

^^ /^\ AA
Vy '' \ / \-^

-i ^=cosx

Fig. 94

directions (Fig. 94). Moreover cos 0, like sin 0, is periodic and

has a period of 360°, i.e.

cos [6 + n . 360°]= cos e,

where n is any positive or negative integer.
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Fig. 95

111. The Tangent Function. In order to trace the varia-

tion of the tangent function, consider a circle of unit radius

with its center at the origin of a system of rectangular axes

(Fig. 95). Then construct the tangent to

this circle at the point M{1, 0) and let P
denote any point on this tangent line. If

angle MOP = 0, we have tan 6 = MP/OM
= MP/I — MP, i.e. the line MP represents

tana

Now when 6 = 0°, MP is 0, i.e. tan 0° is 0.

As the angle 6 increases, tan 6 increases. As

6 ap]3roaches 90° as a limit, MP becomes

infinite, i.e. tan 6 becomes larger than any number whatever.

At 90° the tangent is undefined. It is sometimes convenient

to express this fact by writing

tan 90° = 00.

However we must remember that this is not a definition for

tan 90°, for oo is not a number. This is merely a short way of

saying that as $ approaches 90°, tan becomes infinite and

that at 90° tan 6 is undefined. See § 36.

Thus far we have assumed 6 to be an

acute angle approaching 90° as a limit.

Now let us start with 6 as an obtuse angle

and let it decrease towards 90° as a limit.

In Fig. 96 the line MP' (which is here

negative in direction) represents tan 9.

Arguing precisely as we did before, it is

seen that as the angle 6 approaches 90°

as a limit, tan 6 again increases in magnitude beyond all

bounds, i.e. becomes infinite, remaining, however, always

negative.

Fig. 96
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We then have the following results.

,

(1) When 6 is acute and increases toward' 90° as a limit,

tan always remains positive but becomes infinite. At 90°

tan is undefined.

(2) When 6 is obtuse and decreases towards 90° as a limit,

tan 6 always remains negative but becomes infinite. At 90°

tan 6 is undefined.

It is left as an exercise to finish tracing the variation of the

tangent function as 6 varies from 90° to 360°. Note that

tan 270°, like tan 90°, is undefined. In fact tan n • 90° is unde-

fined, if n is any odd integer.

360° X

Fia. 97

To construct the graph of the function tan 9 we proceed

along lines similar to those used in constructing the graph of

sin e and cos 0. The following table together with Fig. 97

illustrates the method.

d 0° 30° 45° 60° 90° 120° 136° 150° 180° 210°

tan^ MPi MP2 MPz undefined MPi MP^ MP^ 3/P7=0 MPi
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It is important to notice that tan 6y like sin 9 and cos 6j is

periodic, but its period is 180°. That is

tan (6 + 1 • i8o°)= tan 6,

where n is any positive or negative integer.

EXERCISES

1. What is meant by the period of a trigonometric function ?

2. What is the period of sin 6 ? cos 6 ? tan d ?

3. Is sin d defined for all angles ? cos d ?

4. Explain why tan 6 is undefined for certain angles. Name four

angles for which it is undefined. Are there any others ?

5. Is sin (^ + 360^) = sin d ?

6. Is sin {e + 180°) =sin^?

7. Is tan {d + 180°) = tan ^ ?

8. Is tan {6 + 360°) = tan ?

Draw the graphs of the following functions and explain how from the

graph you can tell the period of the function :

9. sin^. 11. tan^. 13. -^•
cos d

10. cosd. 12. —— 14. ^ .

sin d tan 6

Verify the following statements

:

16. sin 90° + sin 270° = 0. 18. cos 180° + sin 180° = - 1.

16. cos 90° + sin 0° = 0. 19. tan 360° + cos 360° = 1.

17. tan 180° + cos 180°=- 1. 20. cos90°-f tan 180°-sin270°= l.

21. Draw the graphs of the functions sin ^, cos 6, tan ^, making use of

a table of natural functions. See p. 638.

22. Draw the curves y = 2 sin ^ ; y = 2 cos ; y = 2 tan 6.

23. Draw the curve j/ = sin + cos 6.

24. From the graphs determine values of d for which sin ^ = ^ ; sin 6

= 1 ; tan <? = 1 ; cos = ^ ; cos ^ = 1.
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Fig. 98

112. Polar Coordinates. It is convenient at this point to

introduce a new way of locating the position of a point in a

plane, and of representing the graph of a function. To this end

(Fig, 98) let OA be a directed line in the plane which we shall

call the initial line or the polar axis.

This line is usually drawn horizontally

and directed to the right. The point

is called the pole or the origin. Let P
be any point in the plane and draw the

line OP. The position of P is then

located completely if we know the angle ^OP=^and the dis-

tance OP=:p. The two numbers (p, 9), called respectively the

radius vector and the vectorial angle, are known as the polar

coordinates of the point P.

In Fig. 98 we have represented a case in which and
f>
are

both positive. Either ot p or both may be negative under

the following conventions. The angle is positive or negative

according to the direction of its rotation, as in § 98. The

positive direction on OP is the direction from along the

terminal side of the angle 0, i.e., it is the direction into which

OA is rotated by a rotation through the angle 0.

With these conventions a point P whose polar coordinates

(/), 0) are given is completely de-

termined. Figure 99 shows points

whose polar coordinates are (2, 30°),

(-2, 30°), (2, -30°), and (-2,
— 30°). It will be noted that, if p is

positive, P is on the terminal side of

$, while if p is negative, P is on the

terminal side produced through 0.

On the other hand, a given point P has an unlimited number of

polar coordinates (p, 6). Even if we confine ourselves to angles

i-s,-so')
{2,30')

(-s,so

)

i2y-30°)

Fig. 99
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in absolute value less than 360°, a point lias in general/owr dif-

ferent sets of polar coordinates. Fig. 100 shows that the same

(e.so').

point P may be designated by any one of the pairs of values

(2, 30°), (2, - 330°), (- 2, 210°), and (- 2, - 150°).

EXERCISES

1. Locate the points whose polar coordinates have the following values :

(4, 30°), (-2, 45<^), (-3, -60°), (2, -160°), (3, -90°), (2, 180°),

(-2, 0°), (0, 90°), (-2, 180°), (- 3, 270°).

2. For each of the points in Ex. 1, give all other sets of polar coordi-

nates for which 6 is in absolute value less than 360°.

3. What exceptions are there to the statement " 6 being confined to

angles in absolute value less than 360°, every point has four and only

four distinct sets of polar coordinates " ?

4. Where are all the points for which ^ is a given constant ?

5. Where are all the points for which p is a given constant ?

113. Graphs in Polar Coordinates. Polar coordinates may
be used to represent the graph of a given function, in a way

quite similar to that in the case of rectangular coordinates.

Fig. 101 gives an example in which the idea of polar coor-

dinates is used in practice. In this example the ^-scale rep-

resents time, the p-scale represents temperature.*^ Some forms

of self-recording hygrometers employ the same idea.

* It will be noted that in this example the radius vector is measured along

a circular arc instead of along a straight line. This is due to the mechanical

(construction of the instrument. Cf. footnote, p. 9. The fundamental idea is,

nevertheless, that of polar coordinates.
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In plotting the graph of a function in polar coordinates we

proceed as in the case of rectangular coordinates. A table of

Fig. 101

corresponding values of the variable 6 and the function p is
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constructed. Each such pair of values is then plotted as a

point, and a curve drawn through these points.

Example. Plot in polar coordinates the graph of p = sin 6. We ob-

tain the table below. Figure 102 exhibits the corresponding points, with

(1.90)

e p = sin ^

0° .00

30^ .50

46° .71

60° .87

90° 1.00

120° .87

135° .71

150° .50

180° .00

210° - .50

225° - .71

240° - .87

270° - 1.00

300° - .87

315° - .71

330° - .50

360° .00

a curve drawn through them. Observe that each point serves to represent

two pairs of corresponding values. Thus the pairs (^, 30°) and (~ i, 210°)

are represented by the same point. This curve suggests a circle, of diame-

ter unity, tangent to the polar axis at the origin.

114. The Graph of sin 6 and cos 6 in Polar Coordinates.

We may now prove :

The graph, in polar coordinates, of the function p — sin $ is a

circle of diameter unity, tangent to the polar axis at the origin.

Let P (p, 6) be any point on such a circle (Fig. 103). Then,

for any value 6 in the first quadrant

OA 1
or p = sin ^.
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Conversely, if p = sin 6, the point P is on the circle. Why ?

A similar proof, which is left as an exercise, may be given

when 6 is in the second, third, or fourth quadrants (Fig, 104).

Similarly, we may prove :

FiQ. 1(M

Hie graph of

p = GO8

in polar coordinates is a circle of diameter unity, passing through

the pole and having its center on the polar axis.

The proof of this statement is left as an exercise. See Figs.

105, 106.

On account of their simplicity, the polar graphs of sin $ and

cos 6 are very serviceable. It is for this reason that we have

FiQ. 105 Fig. 106

introduced them at this point. Polar coordinates will be dis-

cussed again, particularly in Chapter XIV, and incidentally

in other chapters.



168 MATHEMATICAL ANALYSIS [VI, § 114

EXERCISES

1. From Fig. 101, find the temperature at 9 p.m. on Tuesday ; at 3 p.m.

on Monday. When was the temperature a maximum ? a minimum ?

2. Plot in polar coordinates the graph representing the variation in

temperature given in Ex. 1, p. 16.

3. Plot the graph in polar coordinates of the function p = tan d. Why
is this graph not convenient to represent the function tan 6 ?

4. Prove that the graph, in polar coordinates, of /> = a cos ^ is a circle

of diameter a, passing through the origin and w^ith its center on the polar

axis.

5. Prove a theorem regarding the graph of p = a sin d,

115. Other Trigonometric Functions. The reciprocals of

the sine, the cosine, and the tangent of any angle are called,

respectively, the cosecant, the secant, and the cotangent of

that angle. Thus,

cosecant = distance of P^ r
( i^^^ ^ o).

ordinate of P y
^^ ^ ^

, /J
distance of P r , ., , ^^.^secant 6 = ——: = - (provided x^O),
abscissa of P x

. , /, abscissa of P a? , • i •, , r^.
cotangent 6 = — = - (provided y^O).

ordinate oi P y

These functions are written esc 6, sec 0, ctn d. From the

definitions follow directly the relations

csce = ^i-, sece = -, ctn0 =
sin 6' COS0' tan 9'

or

esc ^ • sin ^ = 1, sec ^ • cos ^ = 1, ctn • tan ^ = 1.

To the above functions may be added versed sine (written versin),

the coversed sine (written coversin), and the external secant (written
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exsec), which are defined by the equations versin 6 = 1 — coa 6, coversin e

= 1 — sin 6, and exsec 6 = sec d — 1.

It is left as an exercise to trace the variation of esc By sec 6,

ctn 0, as varies from 0° to 360°. Be careful to note tliat

ctn 0°, ctn 180°, esc 0°, esc 180°, sec 90°, sec 270° are undefined.

Why?

116. The Representation of the Functions by Lines. We
have seen in §§ 109-111, that if we take a unit circle we may
represent sin 9, cos 0, and tan by means of lines. We will

now extend this representation to include esc 6, sec 6, ctn 6.

Fig. 107

Figure 107 shows the functions in a unit circle for an angle

6 in the first quadrant. We have

MF = sin e

OM=Gos6
AT
BS

tan^

ctn^

Or=sec^
OS = CSC $

Draw similar figures for angles in each of the other quad-

rants. The points may be so labeled that the results given

for the first quadrant hold in any quadrant.
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117. Relations among the Trigonometric Functions. As

one might imagine, the six trigonometric functions sine, cosine,

tangent, cosecant, secant, cotangent are connected by certain

relations. We shall now find some of these relations.

From Fig. 80 (§ 102) it is seen that for all cases we have

(1)
• 0:2 4- 2/2 = ,.2_

If we divide both sides of (1) by r^, we have

^ -f-^ = 1 (by hypothesis r^0)\

or

sin2 + cos'e = l.

Dividing both sides by a;^, we have

1 + ^ = ^ iiix^O),
x^ x^

Therefore

1 + tan^ 6 = sec2 6.

Similarly dividing both sides of (1) by if gives

^ + 1 = S (if.'/^O);

or
ctn2 e + 1 = csc2 e.

Moreover, we have

X X COS

r

and, similarly,

ctne=5?i|.
sm6
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118. Identities. By means of the relations just proved

any expression containing trigonometric functions may be

put into a number of different forms. It is often of the

greatest importance to notice that two expressions, although

of a different form, are nevertheless identical in value. (See

§ 47 for the definition of an identity.)

The truth of an identity is usually established by reducing

both sides, either to the same expression,- or to two expres-

sions which we know to be identical. The following examples

will illustrate the methods used.

Example 1. Prove the relation sec^ d + csc^ d = sec^ d csc^ d.

We may write the given equation in the form

sec2 d csc2 5,

or

which reduces to

cos'^ d sin^

?Hl!i±^2sif = sec2ecsc2^,
cos2 dsin^d

sec2 d csc2 d,

cos2 e sin2 d

sec2 d csc2 d = sec2 d csc^ 6.

Since this is an identity, it follows, by retracing the steps, that the

given equality is identically true.

Both members of the given equality are undefined for the angles 0°, 90°,

180°, 270°, 360° or any multiples of these angles.

cos*^ 6
Example 2. Prove the identity 1 + sin ^ = ,—-•

1 — sm ^

Since cos^ ^ = 1 — sin2 ^, we may write the given equation in the form

1 + sin = ^ ~ ^^"^ ^ or 1 + sin d = 1 + sin 6.

1 - sin ^

As in Example 1, this shows that the given equality is identically true.

The right-hand member has no meaning when sin = 1, while the left-

hand member is defined for all angles. We have, therefore, proved that

the two members are equal except for the angle 90° or (4 ji -|- 1) 90°, where

n is any integer.
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The formulas of § 117 may be used to solve examples of the

type given in § 107.

Example 3. Given that sin d = /^ and that tan 6 is negative, find the

values of the other trigonometric functions.

Since sin^ d + cos^ ^ = 1, it follows that cos ^ = ± ^|, but since tan 6 is

negative, 6 lies in the second quadrant and cos 6 must be — ||. More-

over, tlie relation tan d = sin 0/ cos 6 gives tan 6 =— j%. The reciprocals

of these functions give sec ^ = — |f, esc 6 = ^^-^ ctn ^ =— -^.

EXERCISES

1. Define secant of an angle ; cosecant; cotangent.

2. Are there any angles for which the secant is undefined ? If so,

what are the angles ? Answer the same questions for cosecant and co-

tangent.

3. Define versed sine ; coversed sine.

4. Complete the following formulas :

sin20 + cos2 0=? l + tan2^ = ? l+ctn2^=? tan5=?

Do these formulas hold for all angles ?

5. In what quadrants is the secant positive ? negative ? the cosecant

positive ? negative ? cotangent positive ? negative ?

6. Is there an angle whose tangent is positive and whose cotangent is

negative ?

7. In what quadrant is an angle situated if we know that

(a) its sine is positive and its cotangent is negative ?

(6) its tangent is negative and its secant is positive ?

(c) its cotangent is positive and its cosecant is negative ?

8. Express sin^ ^ + cos ^ so that it shall contain no trigonometric

function except cos 6.

9. Transform (1 + ctn^ 6) esc so that it shall contain only sin 6.

10. Which of the trigonometric functions are never less than one in

absolute value ?

11. For what angles is the following equation true : tan = ctn ?

12. How many degrees are there in when ctn ^ = 1 ? ctn^ = — 1 ?

sec ^ = \/2 ? CSC = \/2 ?

13. Determine from a figure the values of the secant, cosecants **»^

cotangent of 30°, 160^, 2W\ 330°.
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14. Determine from a figure the values of the secant, cosecant, and
cotangent of 45% 135°, 226% 316°.

16. Determine from a figure the values of the sine, cosine, tangent,

secant, cosecant, and cotangent of 60^, 120°, 240°, 300°.

16. Show that the graphs of the function sec e, esc ^, ctn d have the

forms indicated in the adjacent figures.

Prove the following identities and state for each the exceptional values

of the variables, if any, for which one or both members are undefined :

17. cos d tan d = sin d.

18. sin 6 ctn Q = cos 6.

1 + sin g _ cos5

cos 6
19

1 — sin g

20. sin2 6 — cos2 6 = 2 sin2 5-1.

21. ( 1 - sin2 5) csc2 6 = ctn2 ^.

22. tan 6 + ctn 5 = sec 5 esc 0.

23. [x sine-t y cos ey -h [xcosd-y sin 6^ = x^ + ^.

CSC 6
24. = cos 0.

tan + ctn

26. 1 - ctn* = 2 csc2 - esc* 0.

26. tan2 5-sin2 5 = tan2 5sin2g.

27. 2(1 + sin 0) ( 1 + cos 0) = (1 + sin + cos ey.

28. sin» + cos« 5 = 1—3 sin2 cos2 6.

CSC 5
29. _^!5^ +

30.

CSC 5 — 1 CSC 5 + 1

1 — tan 9 _ Ctn g - 1

1 + tan 5 ctD 5 -f 1

= 2 sec2 e.
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31. [1 + tan e + sec e][l + ctn e — esc ^]= 2.

32. (taiid + sec^)2 = LiLSEi.
^ ^ 1 - sin ^

33. CSC* ^ (1 - cos* d)-2 ctn2 ^ = 1.

34. (tan d — ctn ^)sin ^ cos = 1 - 2 cos^ e.

36.
sec g - tanj ^ i _ 2 sec g tan ^ + 2 tan^ d.

sec + tan 6

36. ^-^?i«±J^^5j = tanatan/3.
ctn a + ctn /3

37. sin (sec d + esc ^) — cos (sec ^ — esc 6) = sec ^ esc d.

Find algebraically the other trigonometric functions of the angle

when

38. ctn = 4: and sin is negative.

39. sin = I and sec is positive.

40. sec ^ = 2 and tan is negative.

41. CSC ^ = — 5 and ctn is positive.

119. Trigonometric Equations. An identity, as we have

seen (§ 47), is an equality between tvro expressions which is

satisfied for all values of the variables for which both expres-

sions are defined. If the equality is not satisfied for all

values of the variables for which each side is defined, it is

called a conditional equality, or simply an equation. Thus

1 — cos ^ = is true only if ^ = w • 360°, where n is an integer.

To solve a trigonometric equation, i.e. to find the values of

for which the equality is true, we usually proceed as follows.

1. Express all the trigonometric functions involved in terms

of one trigonometric function of the same angle.

2. Find the value (or values) of this function by ordinary

algebraic methods.

3. Find the angles between 0° and 360° which correspond to

the values found. These angles are called particular solutions.

4. Give the general solution by adding n • 360°, where n is

any integer, to the particular solutions.
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Example 1. Find d when sin 5 = ^.

The particular solutions are 30° and 150°. The general solutions are

30° + w . 360°, 150° + n • 360°.

Example 2. Solve the equation tan ^ sin ^ — sin ^ = 0.

Factoring the expression, we have sin 6 (tan^— 1) = 0. Hence we
have sin ^ = 0, or tan ^—1=0. Why ?

The particular solutions are therefore 0°, 180°, 45°, 225°. The general

solutions are n • 360°, 180° + w • 360°, 45° + n . 360°, 225° + n . 360°.

Example 3. Find d when tan 6 + ctn 6 = 2.

The given equation may be written

tan (? + —^ = 2,
tan d

or
tan2 ^-2 tan ^+1 = 0;

therefore

(tan ^ - 1)2 = 0, or tan tf = 1.

It follows that 6 = 46° or 225°
; or, in general,

^ = 46° + n . 360° or 226° + n • 360°.

EXERCISES

Give the particular and the general solutions of the following equations

:

1. sin d = ^. 9. tan ^ = - 1.

2. sin 5 = - ^. 10. ctn ^ = - 1.

3. cos e= ^. 11. tan 6=1.

4. cos 5 = — ^. 12. ctn ^ = 1.

6. sec 6 = 2. 13. tan2 6 = 3.

6. sec ^ = — 2. 14. sin ^ = 0.

7. CSC 6 = 2. 15. cos ^ = 0.

8. esc ^ = - 2. 16. tan 6 = 0.

Solve the following equations giving the particular and the general

solutions in each case :

17. sin d = cos 6. Ans. 45°, 226° ; 45° + n • 360°, 226° + n • 360°.

18. tan^^H- 2sec2^ = 6.

19. 6 sin ^ + 2 cos2 6 = 5. Ans. 90° ; 90° + n • 360°.

20. cos2 ^ + 5 sin = 7.
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21. 4 sin 5 — 3 esc ^ = 0.

22. 2 sin 6 cos^ 5 = sin 5.

23. cos 5 + sec 5 = f

.

24. 2 sin = tan d. Ans. Particular solutions : 0'', 180°, 60°, 300°.

25. 3 sin ^ + 2 cos ^ = 2.

26. 2cos2 ^-1 = 1- sin2 e

.

120. The Trigonometric Functions of — 9. Draw the angles

and — 9, where OP is the terminal line of and OP' is the

terminal line of — 0. Figure 108 shows an angle in each of

P P

X V

p7>
^ ^

Fig. 108

X V X

the four quadrants. We shall choose OP — OP' and {x, y) as

the coordinates of P and (x\ y') as the coordinates of P'. In

all four figures

Hence

x' = ic, y' — — y, r' — T.

sin(-^)=^ = :=^ = -sin(9,
r r

cos (-(9)=^ =-= cos d,
r r

tan(-^)= ^ = ^:^ = -tand!

Also,

csc(— ^)= — csc^; sec (— ^)= seed; ctn (-- d)=— ctnd.
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121. The Trigonometric Functions of 90° — 6. Figure 109

represents angles 9 and 90° — 0, when ^ is in each of the foui

quadrants. Let OP be the terminal line of 6 and OP', the

Y

^

»'

90'-9

VF

X' J^ X

Fio. 109

terminal line of 90° - 6. Take OP' = OP and let (x, y) be the

coordinates of P and (a;', y') the coordinate of P. Then in all

four j&gures we have

^ = y> y'^^y r' = r.

Hence

sin(9O°-0)=4=- = cos^,
r r

tan (90°-^)

—^— IL —
r r

= ^ = ?=ctnd.

cos(90°-^)=-= ^=sind,
r r

y
Also,

CSC (90° -^)=sec^,

sec (90° -(9)=csc^;

ctn(90° -^)=tand.

Definition. The sine and cosine, the tangent and cotan-

gent, the secant and cosecant, are called co-functions of each

other.

The above results may be stated as follows : Any function

of an angle is equal to the corresponding co-function of the com-

plementary angle.*

*Two angles are said to be complementary if their sum is 90°, regardless of

the size of the angles.
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122. The Trigonometric Functions of 180° — 0. By draw-

ing figures as in §§ 120, 121, the following relations may be

proved

:

sin (180° - 0)= sin 0, esc (180° -6)= esc 0,

cos (180° -0)= — cos e, sec (180° -6) = - sec 6,

tan (180° - (9)= - tan 0, ctn (180° -&)=- ctn 6.

The proof is left as an exercise.

123. The Trigonometric Functions of 180° + 6. Similarly,

the following relations hold :

sin (180° + ^)= - sin 0, esc (180° + 0) = - esc 6,

cos (180° 4- ^)= - cos 0, sec (180° + ^) = - sec 6,

tan (180° + (9) = tan B, ctn (180° + ^)= ctn d.

The proof is left as an exercise.

124. Summary. An inspection of the results of §§ 120-123

shows

:

1. Each function of — B or 180° ± B is equal in absolute value

(but not always in sign) to the same function of 0,

2. Each function of 90° — B is equal in magnitude and in sign

to the corresponding co-function of 6.

These principles enable us to find the value of any function

of any angle in terms of a function of a positive acute angle

(not greater than 45° if desired) as the following examples

show.

Example 1. Reduce cos 200° to a function of an angle less than 45°.

Since 200° is in the second quadrant, cos 200° is negative. Hence

cos 200°= - cos 20°. Why ?

Example 2. Reduce tan 260° to a function of an angle less than 45°.

Since 260° is in the third quadrant, tan 260° is positive. Hence
tan 260° = tan 80° = ctn 10° (§ 121).



VI, § 124] TRIGONOMETRIC FUNCTIONS 179

EXERCISES

Reduce to a function of an angle not greater than 45°

:

1. sin 163°. 6. esc 900°.

2. cos(- 110°). 6. ctn (- 1215°).

Ans. — cos 70° or — sin 20°.
7, tan 840°.

3. sec (-265°). 8. sin 510°.

4. tan 428°.

Find without the use of tables the values of the following functions :

9. cos 570°.
13. cos 150°.

10. sin 330°.

11. tan 390°. W- tan 300°.

12. sin 420°.

Reduce the following to functions of positive acute angles :

16. sin 250°. 18. sec (-245°).

Ans. — sin 70° or — cos 20°. 19, esc (— 321°).

16. cos 158°. 20. sin 269°.

17. tan (-389°).

21. Prove the following relations from a figure :

(a) sin (90° + d) = cos d. (c) sin (180° + 6)= - sin $.

cos (90° + e) =- sin d. cos (180° + ^) = - cos 0.

tan (90° + d) = - ctn 0. tan (180° + 0) = tan 0.

esc (90° + 0) = sec 0. CSC (180° + ^) = - esc ^.

sec (90° + ^) = - CSC 0. sec (180° + 0) = -8ec0.

Ctn (90° + 0)=- tan 0. ctn (180° -\-0) = ctn 0.

(6) sin (180° -0)= sin 0. (d) sin (270° - ^) = - cos 0.

cos (180° -0) = - cos 0. cos (270° -0) = - sin 0.

tan ( 1 80° - ^) = - tan 0. tan (270° - ^) = ctn 0.

CSC (180° - ^) = CSC 0. CSC (270° - ^) = - sec 0,

sec (180° -0) = - sec 0. sec (270° -0) =- esc 0.

ctn (180° - ^) =- ctn ^. ctn (270° - ^) = tan 0.

(e) sin (270° + ^) = - cos ^.

cos (270° + ^)= sin ^.

tan (270° + 0) = — ctn 0.

CSC (270° + ^) = - sec ^.

sec (270° + 0)= CSC ^.

ctn(270° + ^) =~ tan^.
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125. Law of Sines. Consider any triangle ABC with the

altitude CD drawn from the vertex C (Fig. 110).

I) B D A
Fia. 110

In all cases we have sin A= -, sin B =-
b a

Therefore, dividing, we obtain

sin^ a

or

sin^ 6'

a b
(2)

sin A sin B
If the perpendicular were dropped from B, the same argu-

ment would give

-^ = -^. (3)
sin A sin C

Combining results (2) and (3) we have

a _ b _ c

sin A sin 5 sin C*

This law is known as the law of sines and may be stated as

follows :

Amj tivo sides of a triangle are proportional to the sines of the

angles opposite these side'i.

126. Law of Cosines. Consider any triangle ABC with the

altitude CD drawn from the vertex C (Fig. 111).

In Fig. Ill a

AD = 6 cos ^ ; CD = 6 sin ^ ; DB = c — beosA.

In Fig. Ill b

AD = — 6 cos -4 ; CD = 6 sin ^ ; DB = c — b cos A
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In both figures

Therefore

a2 = c2 — 2 6c cos A-{-¥ cos^ A-\-ll^ sin^ A
= c^ — 2 &c cos ^ 4- (cos2 A + sin* A) b%

181

b

D B D

whence

FlQ. Ill

a2 = &2 + c2 — 2 6c cos A,

Similarly it may be shown that

52 = c2 -f- a2 - 2 ca • cos B,

c^ z= 0} \- h"^ — 2 ah • cos C.

Any one of these similar results is called the law of cosines

It may be stated as follows :

Tlie square of any side of a triangle is equal to the sum of the

squares of the other two sides diminished by tivice the product of

these two sides times the cosine of their included angle.*

127. Solution of Triangles. To solve a triangle is to find

the parts not given, when certain parts are given. From

geometry we know that a triangle is in general determined

when three parts of the triangle, one of which is a side,

* Of what three theorems in elementary geometry is this the equivalent ?
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are given.* Eight triangles have already been solved

(§ 106 £f.), and we shall now make use of the laws of sines and

cosines to solve oblique triangles. TJie methods employed

will be illustrated by some examples. It will be found

advantageous to construct the triangle to scale, for by so doing

one can often detect errors which may have been made.

128. Illustrative Examples.

Example 1. Solve the triangle ABC, given

^^^^^ A = 30^^ 20', B = 60° 45', a = 276.

^A Solution :

C = 180° - (^ + B)=1S0° - 91° 5' = 88° 55'

;

a sin B 276 sin 60=

sin J. sin 30= 20

45^ ^ (276) (0.8725) ^^ygQ.
I' 0.5050 '

'

also

a sin G^ 276 sin 38° 55' ^ (276) (0.i)998) ^ ^^g ^

Check : It is left as an exercise to show that for these values we have

c2 = a2 + &2 _ 2 a6 cos C.

Example 2. Solve the triangle ABC, given

A = 30°, 6 = 10, a = 6. ^Q^

Constructing the triangle ABC, we see that .^x^so"

two triangles AB\ C and AB2C answer the descrip- -^

tion since b>a> altitude CD.

Solution : Now

Fig. 113

whence

But

-B2

?H^ = ^orsin5i=^^Hl^
sin ^ a a

Bi = 56.5°.

180° - Bi = 180° - 56.5° = 123.6°,

= 0.833,

and

Ci = 180° - (^ + Bi) = 180° - 86.5° = 93.6°,

Ci = 180° -(A + Bi) = 180° - 153.5° = 26.6°.

* When two sides and an angle opposite one of them are given, the triangle

is not always determined. Why ?
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Now

Also

cg^ sin (72
^

oj. c^^ a sin C^ ^ (6) (0.446) ^ g g^^
a sin ^

'

sin ^ 0.600

Ci^ sinCi
Qj,

asm(7i^ (6)(0.998) ^^^Q3
a sin^' sin J. 0.600

Check : Cy^ = a^ -\- b^ — 2 ah cos (7i.

143.5 = 86+ 100 +(2)(6)(10)(0.061) = 143.3.

C22 = a2 4- 62 _ 2 a6 cos O2.

28.62 = 36 + 100-(2)(6)(10)(0;896) - 28.60.

Example 3. Solve the triangle ABC, given a= 10, 6=6, 0=40°.

Solution : c^ = a^ + 6^ _ 2 a6 cos C j^

= 100 + 36 - ( 120) (0. 766) = 44.08.

Therefore c = 6.64. Now \fy^ \V
sin .4 = «^^5iZ = ^lOHO-643) ^ ^ ggg

c 6.64
'

i.e. -4 = 104.6°. Likewise

sin5 = ^«l5_^=(^KM43)^0.581,
c 6.64

Check : A + B^- G= 180.0°.

Example 4. Solve the triangle ABC when

a = 7, 6 = 3, c = 6.

From the law of coshies,

= -!=- 0.500,
2 6c 2

^ + c2-62 ^13^0Q^8,
2ac 14

^2 + 62 - C2 11 n 7QA
COS C = = — = 0. 786.

2 a6 14

Therefore ^ ^ 120°, 5 = 21.8°, C = 38.2°.

Check -. A^-B+ C= 160.0°.

EXERCISES

Solve the triangle ABC, given

(a) ^ = 30°, 5 = 70°, a = 100;

(6)^ = 40°, 5 = 70°, c = 110;

(c) A = 45.5°, = 68.6°, 6 = 40
;

(d)J5 = 60.5°, C = 44°20', c = 20
;
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(e) a = 30, 6 = 64, 0=50°; (g)a=10, 6 = 12, c = U;
(/) 6 = 8, a = 10, O = 60°

;
{h) a = 21, 6 = 24, c = 28.

2. Determine the number of solutions of the triangle ABO when

(a) A = 30°, 6 = 100, a = 70 (e) A = 30°, 6 = 100, a = 120

(/) A = 106°, 6 = 120, a = 16

ig) A = 90°, 6 = 15, a = 14.

(6) A = 30°, 6 = 100, a = 100

(c) ^ = 30°, 6 = 100, a = 50

(d) A = 30°, 6 = 100, a = 40

3. Solve the triangle ABC when

(a) ^ = 37° 20', a = 20, 6 = 26
;

(c) ^ = 30°, a = 22, 6 = 34.

(6) ^ = 37° 20', a = 40, 6 = 26;

4. In order to find the distance from a point A to z. point JB, a line

AC and the angles CAB and ACB were measured and found to be

300 yd., 60° 30', 56° 10' respectively. Find the distance AB.

5. In a parallelogram one side is 40 and one diagonal 90. The angle

between the diagonals (opposite the side 40) is 25°. Find the length of

the other diagonal and the other side. How many solutions ?

6. Two observers 4 miles apart, facing each other, find that the angles

of elevation of a balloon in the same vertical plane with themselves are

60° and 40° respectively. Find the distance from the balloon to each-

observer and the height of the balloon.

7. Two stakes A and B are on opposite sides of a stream ; a third

stake C is set 100 feet from A, and the angles ACB and CAB are observed

to be 40° and 110°, respectively. How far is it from Ato B?
8. The angle between the directions of two forces is 60°. One force

is 10 pounds and the resultant of the two forces is 15 pounds. Find the

other force.*

9. Resolve a force of 90 pounds into two equal components whose

directions make an angle of 60° with each other.

10. An object B is wholly inaccessible and invisible from a certain

point A. However, two points C and D on a line with A may be found

such that from these points B is visible. If it is found that CD =
800 feet, CA = 120 feet, angle DCB = 70°, angle CDB = 50°, find the

length AB.
* It is shown in physics that If the line segments AB

3 ~^^ ^^^ -^^ represent in magnitude and direction two forces

r ^^^/ acting at a point A, then the diagonal AJ) of the parallelo-

fy^^ / gram ABCD represents both in magnitude and direction

A B the resultant of the two given forces.
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11. Given a, 6, A, in the triangle ABC. Show that the number of

possible solutions are as follows :

[
a < 6 sin ^ no solution,

I bsmA<ia<.b two solutions,

\a>b
I
a = 6 sinJ one solution.

( a <b no solution,

I o > 6 one solution.

12. The diagonals of a parallelogram are 14 and 16 and form an angle

of 50°. Find the length of the sides.

13. Resolve a force of magnitude 150 into two components of 100 and

80 and find the angle between these components.

14. It is sometimes desirable in surveying to extend a line such as AB

in the adjoining figure. Show that this can be done by means of the

broken line ABODE. What measurements are necessary ?

15. Three circles of radii 2, 6, 5 are mutually tangent. Find the angles

between their lines of centers.

16. In order to find the distance between two objects A and B on op-

posite sides of a house, a station C was chosen, and the distances CA
= 500 ft., CB = 200 ft., together with the angle ACB - 65° SO' were

measured. Find the distance from A to B.

17. The sides of a field are 10, 8, and 12

rods respectively. Find the angle opposite the

longer side.

18. From a tower 80 feet high, two objects,

A and B, in the plane of the base are found to

have angles of depression of 13° and 10° respec-

tively ; the horiz(mtal angle subtended by A and B at the foot C of the

tower is 44°. Find the distance from A to B.
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129. Areas of Oblique Triangles.

1. When two sides and the included angle are given.

Denoting the area by S^ we have from geometry

G S = ^ch,

but ^ = & sin ^ ; therefore

(4) S^^cb sin A.

Likewise,
Fig. 116

S — ^ab sin O and S = ^acsinB.

2. When a side and two adjacent angles are given.

Suppose the side a and the adjacent angles B and C to be

given. We have just seen that S = ^ac sin B. But from the

law of sines we have

a sin C

Therefore

S =

SIR A

a^ • sin jB • sin C
2 sin A

But sin A = sin [180° - (5 + (7)]= sin (5 + C). Therefore

^ _ a'^ sin B sin O
~

2 sin (5+0)'

3. When the three sides are given.

We have seen that S = ^bc sin A. Squaring both sides of

this formula and transforming, we have

™ 7)2,.2 7)2^2

S^ =^ sin2^ = ^(l-cos2^)

whence,

= |(l4-cos^).|(l-cos^);

^^A 1
b^-\-c^-a'

S' =^ 1-h
2 V 2 6c

;N bcf. b^ + c^-a^\

J 2[ 2 be J
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4 '

4

_M-_c4;_a b -\-c—a a~b-\-c g-f 6~c2*2*2*2'
which may be written in the form

S^ = s(s-a){s-b)(s-c),

where 2s = a + &4-c. Therefore,

(5) S = Vs(s-a)(s-6)(s-c).

130. The Radius of the Inscribed Circle. If r is the radius

of the inscribed circle, we have from elementary geometry,

since s is half the perimeter of the triangle, S = rs ; equating

this value of S to that found in equation (5) of the last article

and then solving for r, we get,

^J(s-a)(s-b)(s-c)
_

^ 5

EXERCISES

Find the area of the triangle ABC, given

1. a = 26, b = 31.4, C = 80° 25'. 4. a = 10, 6 = 7, = 60°.

2. 6 = 24, c = 34 3, ^ = 60° 25'. 5. a = 10, 6 = 12, C=60°.

3. a = 37, 6 = 13, C = 40°. 6. a = 10, 6 = 12, C = 8°.

7. Find the area of a parallelogram in terms of two adjacent sides

and the included angle.

8. The base of an isosceles triangle is 20 ft. and the area is 100/ \/3

sq. ft. Find the angles of the triangle. Ans. 30°, 30°, 120°.

9. Find the radius of the inscribed circle of the triangle whose sides

are 12, 10, 8.

10. How many acres are there in a triangular field having one of its

sides 60 rods in length and the two adjacent angles, respectively, 70°

and 60° ?



CHAPTER VII

TRIGONOMETRIC RELATIONS

131. Radian Measure. In certain kinds of work it is more

convenient in measuring angles to use, instead of the degree,

a unit called the radian. A radian is defined as the angle at

the center of a circle whose subtended arc is equal in length

to the radius of the circle (Fig. 117). Therefore, if an angle 6

at the center of a circle of radius r units subtends an arc of

s units, the measure of in radians is

(1) 0=i.

Since the length of the whole circle is 2 irr, it follows that

^^ = 2 TT radians = 360°,
r

(2) IT radians = 180°.

Fig. 117 Therefore,
-IQAO

1 radian =±^ = 57° 17' 45" (approximately).
TT

It is important to note that the radian * as defined is a con-

stant angle, i.e., it is the same for all circles, and can therefore

be used as a unit of measure.

* The symbol »" is often used to denote radians. Thus 2" stands for 2

radians, tt*- for tt radians, etc. When the angle is expressed in terms of -t (the

radian being the unit) , it is customary to omit »•. Thus, when we refer to an

angle tt, we mean an angle of tt radians. When the word radian is omitted, it

should be mentally supplied in order to avoid the error of supposing ir means
180. Here, as in geometry, IT = ;i. 14159. ...

188
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Erom relation (2) it follows that to convert radians into

degrees it is only necessary to multiply the number of radians

by ISO/V, while to convert degrees into radians we multiply

the number of degrees by 7r/180. Thus 45° is 7r/4 radians

;

7r/2 radians is 90°.

132. The Length of Arc of a Circle. From relation (1),

§ 131, it follows that s=re
5 = re.

That is (Fig. 118), if a central angle is measured

in radians, and if its intercepted arc and the

radius of the circle are measured in terms of

the same unit, then
^°'

length of arc = radius x central angle in radians.

EXERCISES

1. Express the following angles in radians :

25°, 145°, 225°, 300°, 270°, 450°, 1150°.

2. Express in degrees the following angles

:

IT 7 IT Sir n 57r

4' "T' T'^'^'T*
t. A circle has a radius of 20 inches. How many radians are there in

an angle at the center subtended by an arc of 25 inches ? How many
degrees are there in this same angle ? Ans. f ;

71° 37' approx.

4. Find the radius of a circle in which an arc 12 inches long subtends

an angle of 35°.

6. The minute hand of a clock is 4 feet long. How far does its ex-

tremity move in 22 minutes ? -

6. In how many hours is a point on the equator carried by the rotation

of the earth on its axis through a distance equal to the diameter of the earth ?

7. A train is traveling at the rate of 10 miles per hour .on a curve of

half a mile radius. Through what angle has it turned in one minute ?

8. A wheel 10 inches in diameter is belted to a wheel 3 inches in

diameter. If the first wheel rotates at the rate of 5 revolutions per

minute, at what rate is the second rotating ? How fast must the former

rotate in order to produce 6000 revolutions per minute in the latter ?
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133. Angular Measurement in Artillery Service. The

divided circles by means of which the guns of the United States Field

Artillery are aimed are graduated neither in degrees nor in radians, but

in units called mils. The mil is defined as an angle subtended by an arc

of g:^^ of the circumference, and is therefore equal to

2_ir_ ^ SAAW ^ 0.00098175 = (0.001 - 0.00001825) radian.
6400 3200

^

The mil is therefore approximately one thousandth of a radian.

(Hence its name.)*

Since (§132)

length of arc = radius x central angle in radians,

it follows that we have approximately

T5) li illA
length of arc = x central angle in mils

;

1000
^ '

i.e. length of arc in yards = (radius in thousands of yards) • (angle

in mils). The error here is about 2 %.

Example 1. A battery occupies a front of 60 yd. If it is at

5500 yd. range, what angle does it subtend (Fig. 119)? We
have, evidently,

angle =— = 11 mils.
5.5

Example 2. Indirect Fire, t A battery posted with its right gun at G
is to open fire on a battery at a point T, distant 2000 yd. and invisible

* To give an idea of the value in mils of certain angles the following has
been taken from the Drill Regulations for Field Artillery (1911), p. 164:

" Hold the hand vertically, palm outward, arm fully extended to the front.

Then the angle subtended by the

width of thumb is 40 mils

width of first finger at second joint is 40 mils

width of second finger at second joint is .... 40 mils

width of third finger at second joint is 35 mils

width of little finger at second joint is 30 mils

width of first, second, and third fingers at second joint is . 115 mils

These are average values."

t The limits of this text preclude giving more than a single illustration of

the problems arising in artillery practice. For other problems the student is

referred to the Drill Regulations for Field Artillery (1911), pp. 57, 61, 150-164;

and to Andrews, Fundamentals of Military Service, pp. 153-159, from which
latter text the above example is taken.
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from Cr (Fig. 120) . The officer directing the fire takes post at a point

B from which both the target T ami a church spire P, distant 3000 yd.

from O are visible. B is 100 yd. at the right of the line &T and 120 yd.

at the right of the line GP and the officer finds by measurement that the

angle P-BT contains 3145 mils. In order to train the gun on the target

the gunner must set off the angle PGT on jf rpr

the sight of the piece and then move the gun

until the spire P is visible through the sight.

When this is effected, the gun is aimed at T.

Let F and E be the feet of the perpen-

diculars from B to G^Tand G^P respectively,

and let BV and BP' be the parallels to

OT and OP that pass through B. Then,

evidently, if the officer at B measures the

angle PPT, which would be used instead

of angle POT were the gun at B instead

of at G^ and determines the angles TBT' =
FTB and PBP' = EPB, he can find the

angle PGT from the relation

PGT=P'BT'= PBT
Fig. 120

TBT'- PBP'.

Now tan FTB FB
TF

tan EPB =—

.

PF

Furthermore if FTB and EPB are small angles, i.e., if FB and EB are

small compared with OT Sind OP respectively, the radian measure of the

angle is approximately equal to the tangent of the angle. Why ? Hence

we have
FB
GT
EB
OP

100
Therefore

FTB - tan FTB =

EPB = tan EPB
approximately.

TBT' = FTB = -^^^ radians
2000

50 mils.

PBP' EPB =-^ radians
3000

40 mils.

Hence POT = PBT- TBT - PBP*
= 3145 - 60 - 40

— 3056 mils,

which is the angle to be set off on the sight of the gun.
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Hence for the situation indicated in Fig. 120 we have the following

rule :
*

(]) Measure in mils the angle PBT from the aiming point P to the

target T as seen at B.

: (2) Measure or estimate the offsets FB and EB in yards, the range

G^Tand the distance GB of the aiming point P in thousands of yards.

(3) Compute in mils the offset angles by means of the relations

TBT = FTB,
FBP' = EPB,

TBr=—,
GT'

CrF

(4) Then the angle of deflection FGT is equal to the angle FBT
diminished by the sum of the offset angles.

EXERCISES

1. A battery occupies a front of 80 yd. It is at 5000 yd. range.

What angle does it subtend ?

2. In Fig. 120 suppose FBT= 3000 mils, FB = 200 yd., GT = 3000 yd.,

EB = 150 yd., GP = 4000 yd. Find the number of mils in FGT.

3. A battery at a point G is ordered to take a masked position and be

ready to fire on an indicated hostile battery at a point T whose range is

known to be 2100 yd. The battery commander finds an observing station

B, 200 yd. at the right and on the prolongation of the battery front, and

175 yd. at the right of PGr An aiming point P, 5900 yd. in the rear, is

found, and PBT is found to be 2600 mils. Find FGT.

134. Inverse Trigonometric Functions. The equation

X = sin y (1)

may be read

:

y is an angle whose sine is equal to a;,

a statement which is usually written in the contracted, form

y — arc sinflj.f (2)

* There are three cases with corresponding rules, depending on whether P
is in front of, rear of, or on the flank of G.

t Sometimes written y = sin-i.c. Hefe — 1 is not an algebraic exponent,

but merely a part of a functional symbol. When we wish to raise sin x to

the power — 1, we write (sin a;)-i.
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For example, x = sin 30° means that x = ^, while y = arc sin^

means that y = 30°, 150°, or in general (n being an integer),

30° + n . 360° ; 150° + n • 360°.

Since the sine is never greater than 1 and never less than

— 1, it follows that — 1 ^ a; ^ 1. It is evident that there is

an unlimited number of values of y = arc sin x for a given value

of X in this interval.

We shall now define the principal value Arc sin x* of arc sin x^

distinguished from arc sin x by the use of the capital A, to

be the numerically smallest angle whose sine is equal to x.

This function like arc sin x is defined only for those values of

X for whichsk

- 1< a; < 1.

The difference between arc sin x and Arc sin x is well illus-

trated by means of their graph. It is

evident that the graph oi y = arc sin x,

i.e. X = sin y is simply the sine curve

with the role of the x and y axes inter-

changed. (See Fig. 121.) Then for every

admissible value of x, there is an un-

limited number of values of y ; namely,

the ordinates of all the points Pi, P2, — , in

which a line at a distance x and parallel

to the 2/-axis intersects the curve. The

single-valued function Arc sin x is repre-

sented by the part of the graph between

Jlf and iV.

Similarly arc cos x, defined as " an angle whose cosine is a;,"

* Sometimes written Sin-icc, distinguished from sin-^a; by the ase of the

capital S.

T -.

2t ^ Ps

( sir

ir \n
IT

i

>

y
N-

-i^ 1 X
MG

y= arc sin x
y='Ar(;sinx

Fig. 121
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has an anlimited. number of values for

every admissible value of a; (— 1^ a; ^ 1).

We shall define the principal value Arc

cos X as the smallest positive angle whose

cosine is x. That is,

< Arc cos a? ^ TT.

Figure 122 represents the graph of

y = arc cos x and the portion of this graph

between M and N represents Arc cos x.

Similarly we write x = tan y as y,= arc

tan X, and in the same way we define the

symbols arc ctn x ; arc sec x ; arc esc x.

The principal values of all the inverse trigonometric functions

are given in the following table.

7

2ir )
3jr

Ps

N
^J

IT ^\M
-1

IT <
1 X

y= arc cos x
y=Arc cosz

Fig. 122

y = Arc sin x Arc cos X Arc tan x

Range of x

Range of y

X positive

X negative

-^to^
2 2

1st Quad.

4th Quad.

-l^x^l
to T

1st Quad.

2d Quad.

all real values

1st Quad.

4th Quad.

Arc ctn x Arc sec x Arc CSC X

Range of x

Range of y

X positive

X negative

all values

tOTT

1st Quad.

2d Quad.

a; > 1 or a; < - 1

tOTT

1st Quad.

2d Quad.

X>l0TX<-l
-^ to"^

2 2

1st Quad.

4th Quad.

In so far as is possible we select the principal value of each

inverse function, and its range, so that the function is single-

valued, continuous, and takes on all possible values. This ob-

viously cannot be done for the Arc sec x and for Arc esc y.
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EXERCISES

1. Explain the difference between arc sin x and Arc sin x.

2. Find the values of the following expressions :

(a) Arc sin \. (&) arc sin \. (c) arc tan 1.

(d) Arc tan - 1. (e) arc cos I^. (H Arc cos lA.
2

'

2

3. What is meant by the angle tt ? 7r/4?

4. Through how many radians does the minute hand of a watch turn

in 30 minutes ? in one hour ? in one and one half hours ?

5. For what values of x are the following functions defined :

(a) arc sin x ? (6) arc cos cc? (c) arc tan x ?

id) arc ctn X ? (e) arc sec a; ? (/) arc esc cc ?

6. What is the range of values of the functions :

(a) Arc sin x ? (&) Arc cos x ? (c) Arc tan x ?

id) Arc ctn x ? (e) Arc sec x ? (/) Arc esc x ?

7. Draw the graph of the functions

:

(a) arc sin x. (&) arc cos x. (c) arc tan x.

(<?) arc ctn X. (e) arc sec x. (/) arc esc x.

8. Find the value of cos (Arc tan |).

Hint. Let Arc tan \ = 6. Then tan ^ = f and we wish to find the

value of cos e.

9. Find the values of cos (arc tan |).

10. Find the value of the following expressions :

(a) sin (arc cos |). (c) cos (Arc cos y\). (e) sin (Arc sin \).

(&) sin (arc sec 3). {d) sec (Arc esc 2). (/) tan (Arc tan 6).

11. Prove that Arc sin (2/6) = Arc tan (2/V2T).

12. Find x when Arc cos (2 x^ — 2 x) = 2 7r/3.

Find the values of the following expressions

:

13. cos [90^ — Arc tan |].

14. sec [90° -Arc sec 2].

15. tan [90° - Arc sin ^{\.
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135. Projection. Consider two directed lines p and g in a

plane, i.e. two lines on each of which one of the directions

has been specified as positive (Fig. 123). Let A and B be

any two points on p and let A\ B' be the points in which per-

Fig. 123

pendiculars to q through A and B, respectively, meet q. The

directed segment A'B' is called the projection of the directed seg-

ment AB on q and is denoted by

A'B' = proj^ AB.

In both figures AB is positive. In the first figure A'B' is posi-

tive, while in the second figure it is negative.

As special cases of this definition we note the following

:

1. If p and q are parallel and are directed in the same way,

we have
^m]^AB=:AB.

2. If p and q are parallel and are directed oppositely, we

have
^xo]^AB=-AB.

3. If p is perpendicular to q, we have

proj,^B = 0.

It should be noted carefully that these propositions are true

no matter how A and B are situated on p.

We may now prove the following important proposition;
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If Aj B are any two points on a directed line p, and q is

any directed line in the same plane with p, then we have both in

Tnagnitvde and sign :

(1) proj\ AB = AB' cos {qp),

where (qp) represents an angle through ichich q must be rotated

in order to make its direction coincide with the-direction ofp.

We note first that all possible determinations of the angle

(qp) have the same cosine, since any two of these determina-

tions differ by multiples of 360° (Fig. 124). We shall prove

Fig. 124

the proposition first for the case where AB has the same direc-

tion as p, i.e. where AB is positive. To this end we draw

through A (Fig. 125) a line qi parallel to q and directed in the

A'

\Z.
B'

^A Bi^ B

J.I' JS' '^
Fig. 125

same way. (We may evidently assume without loss of gener-

ality that q is horizontal and is directed to the right.)

Let A'B' have the same significance as before and let BB'

meet ^'i in Bi. Then, by the definition of the cosine, we have

A 7?—^ = cos (q^p) = cos (qp)y

in magnitude and in sign ; or

ABi = ^5 cos (qp).
But

Therefore
AB, = A'B'=VTOj^AB.

projg AB = AB cos (qp).
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Finally, if AB is negative, BA is positive, and, by the result

just obtained, we should have

B'A' == BA cos (qp).

Hence, changing signs on both sides of this equation, we

have
A'B' = AB cos (q 2^).

The special cases 1, 2, 3 listed on p. 196 are obtained from

formula (1) by placing (qp) equal to 0°, 180°, 90°, respectively

;

for cos 0° = 1, cos 180° - - 1, cos 90° = 0.

136. Application of Projection. In Physics, forces and

velocities are usually represented by line segments. A force

of 20 pounds, for example, is represented by a segment 20 units

in length and drawn in the direction of the force. A velocity

of 20 feet per second is represented by a segment 20 units in

length and drawn in the direction of the motion.

The projection on a given line I of a segment representing

a force or velocity represents the component of the force or

velocity in the direction of l.

Example. A smooth block is sliding down a smooth incline

which makes an angle of 30° with the horizontal. If the block

weighs 10 lb., what force acting directly up

the plane will keep the block at rest ?

Draw the segment AB 10 units in length,

directly downward to represent the force

exerted by the weight. Project this segment
Fig. 126

^^ ^^^ incline and call this projection AC.

Now angleABC = 30°. Therefore AC = AB sin 30° = 5. This

is the component of the force AB down the plane. Therefore

a force of 5 lb. acting up the plane will keep the body at rest.
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Theorem. If A, B, C are any three points in a plarie, arid I

is any directed line iii the plane, the algebraic sum of the projec-

tions of the segments AB and BC on I is equal to the projection of

the segment AC on I.

As a point traces out the path, from A to B, and then from

B to O (Fig. 127), the projection of the poiiit traces out the

segments from A' to B' and then from B'

to C. The net result of this motion is a

motion from A' to C which represents

the projection of AC, i.e.

A'B' + B'C = A'C, Fig. 127

EXERCISES

1. What is the projection of a line segment upon a line I, if the line

segment is perpendicular to the line I ?

2. Find proj^^ AB and proj^ AB* in each of the following cases, if a

denotes the angle from the cc-axis to AB.

(a) AB = 5, a = 60°. (c) AB = 6, a = 90°.

(6) AB = 10, a = 300°. (d) AB = 20, a = 210°.

3. Prove hy means of projection that in a triangle ABC
a = b cos C + c cos B.

4. If proja; AB = 3 and projy AB = — 4, find the length of AB.

6. A steamer is going northeast 20 miles per hour. How fast is it

going north ? going east ?

6. A 20 lb. block is sliding down a 15° incline. Find what force

acting directly up the plane will just hold the block, allowing one half a

pound for friction.

7. Prove that if the sides of a polygon are projected in order upon any

given line, the sum of these projections is zero.

* Proji AB and projy AB mean the projections of AB on the x-axis and

the y-axis, respectively.
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137. Rotation in a Plane. Suppose that a point P{Xj y) in

a plane moves on the arc of a circle with center at the origin 0,

through an angle a. Suppose that its position after this

rotation is Pix^ y') referred to the same axes of coordinates.

We desire to find x' and y' in terms of a;, y, and a.

In Fig. 128 we have

drawn P and its coordi-

nates X = OM, y = MP, and

the new position OM' P' of

the triangle OMP after a

rotation about the origin

through an angle a. The

coordinates x' = ON, ?/' =
NP' of P are the pro-

jections of OP on the

a;-axis and the y-axis re-

spectively, and these pro-

jections are equal respec-

tively to the sum of the projections of OM' and M'P on the

respective axes. Hence,

x' = proj, OP = proj, OM' -f- proj, M'P
= OM' cos {OX, OM') 4- M'P cos (OX, M'P)
= X cos a -\- y cos (a -1- 7r/2)

= X cos a — y sin a.

y' = proj, OP = proj^ OM' -f- proj^ M'P'

= OM' cos (OF, 03/') -f 3/'P' cos ( OY, M'P')

= X cos (— 7r/2 + «) -f- 2/ cos a

= X sin a -h y cos a.

Therefore, if the point P{x, y) is rotated about the origin

through an angle a, the coordinates (x', y') of its new position

are given by the formulas

Y>

\1
P'l

1 ^

N. CCm
k

L/ P

hs\^ V

'/>'''x' \

1^T X ¥ ^X

Fig. 128
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(1)
J
x' = X cos a — y sin a

[j/ = x sin a + 1/ cos a.

It should be noted that the above method of derivation is

entirely general, i.e. it will apply to a point P in any quad-

rant and to any angle a.

138. The Addition Formulas. We may now enter upon a

more detailed study of the properties

of the trigonometric functions. We
shall first express sin (a + p) and

cos (a + /8) in terms of sin a, cos a,

sin p, cos 13.* To this end let OP be

the terminal side of any angle a (Fig.

129). If OP is then rotated about

through an angle jS to the position

OP, the terminal line of the angle

a -\- p is OP'. If P has the coordinates (x, y) and P the

coordinates {x\ y'), then from (1) § 137,

x' = xcos p — y sin /8,

y' = X sin ^ + y cos p.

Now sin {a + y8) is by definition equal to ^ and cos (a 4- /?)

OP' = OP. Hence

sin(a+ fi)=^ = - sin/3 4-^ cos^S,
7- r r

sin (a + P)= sin a cos p + cos a sin p.

T
/
Mv)

/ '' p^
L^

V

W" X X

Fig. 129

to — where r
r

or

(1)

Also

or

(2)

cos (a + ;8)= - = - cos ^ - ^ sin^,
r r r

cos (a 4- P)
= cos a cos p — sin a sin p.

We have already had occasion to note that sin (a + ^) is not in general

equal to sin a + sin ^. (See Ex. 5, p. 151.)
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Further we have

tan (a4- B) = sin (a -\- /?) __ sin « cos ^ + cos ce sin yg

cos {a -f- y8) cos a cos /3 — sin a sin)8*

Dividing numerator and denominator by cos a cos )8, we have

(3) tan(a + 3) = ^^ + ^^°^.

Furthermore, by replacing yg by — /? in (1), (2), and (3), and

recalling that

sin (—/?)= — sin 13, cos (— ^)= cos /?, tan (— yS) = — tanyS,

we obtain

(4) sin(a— p)=sinacosp— cosasinp,

(5) cos (a — p) = cos a cos p + sin a sin p,

(6) tanCa- S)= tang-tanp
v; i^ii^a p; i_^tanatanp

EXERCISES
Expand the following

:

1. sin (45° + a)= 3. cos (60'' + a) = 5. sin (30° - 45°) =
2. tan (30°-^)= 4. tan (45° + 60°) = 6. cos ( 180° - 45°) =
7. What do the following formulas become if a = yS ?

sin (a + /3) = sin a cos ^3 -f cos a sin /3. ^^^ /^ , on _ tan ct + tan j3

sin (a — /3) = sin a cos j3 — cos a sin jS. '
~

1 - tan a tan /3

*

cos (a + /3) = cos a cos /3 - sin a sin ^. . , „. _ tan a — tan/3
lan fcc — p) — ————

.

cos (a — /3) = cos a cos ^ + sm a sin /3. 1 + tan a tan )3

8. Complete the following formulas :

sin 2 a cos a + cos 2 a sin a = tan 2 « + tan a _
sin 3 a cos a — cos 3 a sin a = 1 — tan 2 a tan a

~

9. Prove sin 75° =: ^^ + \ cos75°=^^-:\ tan75° = ^5+^.
2\/2 2V2 V3-1

10. Given tan a = |, sin /3 = ^\, and « and ^ both positive acute angles,

find the value of tan (a -f /3) ; sin (a — /3) ; cos(a + /3) ; tan (a - /3).
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11. Prove that

(a) cos (60° + a) + sin (80° + «) = cos a.

(b) sin (60° + 6)- sin (60° - ^)= sin d.

(c) cos (30° -f ^) - cos (30° - d) = -^in d.

(d) cos (45° + d)+ cos (45° -6) = V2 • cos 6.

(e) sin(a + -J
+ sinfa — -j = sina.

(/) cos(a + ^) + cos(a-^) = V3.

(g) tan (45° + ^) = L±ia!L?

.

(h) tan (46° - 5) = ^ ^ ^^° ^
•

12. By using the functions of 60° and 30° find the value of sin 90°

;

cos 90°.

13. Find in radical form the value of sin 15°; cos 15°; tan 16° J

sin 105° ; cos 105°
; tan 105°.

14. If tan a = I, sin j3 = j\, and a is in the third quadrant while /3 is

in the second, find sin (a ± j3) ; cos (a ± /3) ; tan (a ± /3).

Prove the following identities :

j^g
sin (ct + /3) _ tan ct + tan /3 jg sin2cs ^^^ ^ ^ = ejn 3 «
sin (a — j3) tan a — tan /3

' sec a esc a

j^ tan ot — tan (cc — /3) _ ^^ o 19- (a) sin (180° — &) = sin ^.

l + tanatan(a -^)
~

(&) cos(180° - ^) =- cos^.

18. tan(0 ± 45°) + ctn {6 T 45°) = 0. (c) tan (180° - ^) =- tan Q.

20. cos (a + /3) cos (a — /3) = cos^ a — sin^ ^.

21. sin (a + jS) sin (a — /3) = sin2 a — sin2 /3.

22. ctn(«+^) = ^^"""^'^^-^
23. ctn («-^) = ^ill^^^^+i

.

ctn a + ctn j3 ctn /3 - ctn a

24. Prove Arc tan ^ + Arc tan \ = ir/i

[Hint : Let Arc tan l = x and Arc tan 1 = y. Then we wish to prove

X -i-y = 7r/4, which is true since tan (x + y)= 1.]

25. Prove Arc sin a + Arc cos a = - , if < a < 1.

26. Prove Arc sin j\ + Arc sin f= Arc sin ||.

27. Prove Arc tan 2 -}- Arc tan ^ = 7r/2.

28. Prove Arc cos | + Arc cos (— ^j) = Arc cos ( — ff).

29. Prove Arc tan j% + Arc tan | = Arc tan ||.

30. Find the value of sin [Arc sin | + Arc ctn |].

31. Find the value of sin [Arc sin a -HArc sin 6] if < a < 1, < 6 < 1.
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32. Expand sin (x -{ y -\- z) ; cos(x + y + z).

[Hint: a; + 2/ + 2 = (x + ?/) + 2.]

33. The area ^ of a triangle was computed from the formula

A = I ab sin 6. If an error e was made in measuring the angle ^, show that

the corrected area A' is given by the relation A' = A{co8€ + sinectn^).

139. Functions of Double Angles. In this and the follow-

ing articles (§§ 139-141) we shall derive from the addition

formulas a variety of other relations which are serviceable in

transforming trigonometric expressions. Since the formulas

for sin (a + /3) and cos (a + yS) are true for all angles a and
fi,

they will be true when JS = a. Putting /? = a, we obtain

(1) sin 2 a = 2 sin a cos a,

(2) cos 2 a = cos2 a — sin2 a.

Since sin^ a + cos^ a = 1, we have also

(3) cos 2 a = 1 - 2 sin2 a

(4) = 2 C0S2 a — 1.

Similarly the formula for tan (a + /?) (which is true for all

angles a, ^, and a + /3 which have tangents) becomes, when

)8 = «,

^ ^
1 — tan^a

which holds for every angle for which both members are

defined.

The above formulas should be learned in words. For ex-

ample, formula (1) states that the sine of any angle equals

twice the sine of half the angle times the cosine of half the

angle. Thus
sin 6 a; = 2 sin 3 x cos 3 a?,

2 tan 2 x
tan 4 x =

l~tan22a;'

cos a; =5 cos*?— sin^?.
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140. Functions of Half Angles. From (3), § 139, we have

2sin^^ =; 1 — COS a.

Therefore

• «-!=(6) :±v'~r"
From (4), § 139, we have

Therefore

2cos2^ =

cos|=

1 + COS a.

(J) ±V'T"-
rormulas (6) and (7) are at once seen to hold for all angles

a. Now, if we divide formula (6) by formula (7), we obtain

(8) ta"i=±Vr
— cos a

-j- cos a

which is true for all angles a except n • 180°, where n is any

odd integer.

Example. Given sin ^ = — 3/5, cos A negative ; find sin (A/2).

Since the angle A is in the third quadrant, A/2 is in the second or

fourth quadrant, and hence sin (A/2) may be either positive or negative.

Therefore, since cos A=— 4/5, we have

2 Al 2 VlO 10

EXERCISES

Complete the following formulas and state whether they are true for

all angles

:

1. sin 2 a = 3. tan 2 a = 6. cos ^=
2

2. cos2a= (three forms). 4. sin-i= 6. tan- =
2 ' ^

7. In what quadrant is e/2 if 6 is positive, less than 360°, and in the

second quadrant ? third quadrant ? fourth quadrant ?
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8. Express cos 2 a in terms of cos 4 a.

9. Express sin x in terms of functions of 3 x.

10. Express tan 4 a in terms of tan 2 a.

11. Express tan 4 a in terms of cos 8 a.

12. Express sin x in terms of functions of x/2.

13. Explain why the formulas for sin x and cos x in terms of functions

ot2x have a double sign.

14 From the functions of 30° find those of 60°.

15. From the functions of 60° find those of 30°.

16. From the functions of 30° find those of 16°.

17. From the functions of 15° find those of 7.5°.

18 Find the functions of 2 a if sin a = f and a is in the second

quadrant.

19. Find the functions of a/2 if cos a =— 0.6 and a is in third quad-

rant, positive, and less than 360°.

20. Express sin 3 a in terms of sin a. [Hint : 3a = 2a-f-a.]

21. From the value of cos 45° find the functions of 22.5".

22. Given sin a = — and a in the second quadrant. Find the values of
13 ^

(a) sin 2 a. (c) cos 2 a. (e) tan 2 a.

(b) sin". (d) cos-. (/) tan-.
2 2 2

o
23. If tan 2 a = - find sin a, cos a, tan a if a is an angle in the third

4

quadrant.

Prove the following identities :

24. L±-^2S^=ctn«. 27. 1 - cos 2 ^ + sin 2 g^ ^^^ ^
sin a 2 1 -I- cos 2 ^ 4- sin 2 ^

26. fsin^-cos^j = 1 - sin 5. 28. sin^ + cos^ = ± Vl + sin«.

26.
cos2g + cosg-H^^^^g

29. sec« + tan a = tanf? + «^
siu2e + sin^ \4 2/

30. 2 Arc cos x = Arc cos (2 a;* — 1)

.

31. 2 Arc coso; = Arcsin (2 arvl — a;2).
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32. tan [2 Arc tan x] = -^-^ . 34. tan [2 Arc sec x] = ± ^ ^

1-x-^
-

2 - x-^

1 — r2
33. cos [2 Arc tan x] = ~ — • 35. cos (2 Arc sin a) = 1 - 2 a^.

• -•
1 + x^

Solve the following equations

:

36. cos 2 X + 5 sin X = 3. 40. sin^ 2 x — sin^ x = |.

37. cos 2 X - sin X = |. 41. sin 2 x = 2 cos x.

38. sin 2 X cos X = sin X. 42. 2 sin22x = 1 — cos2x.

39. 2 sin2 x + sin^ 2 x = 2. 43 ctn x — esc 2 x = 1.

44. A flagpole 50 ft. high stands on a tower 49 ft. high. At what dis-

tance from the foot of tlie tower will the flagpole and the tower subtend

equal angles ?

45. The dial of a town clock has a diameter of 10 ft. and its center is

100 ft. above the ground. At what distance from the foot of the tower

will the dial be most plainly visible ? [The angle subtended by the dial

must be as large as possible.]

141. Product Formulas. From § 138 we have

sin (a 4- j8)= sin a cos ft
-\- cos a sin p,

sin (a — ^) = sin a cos ^ — cos a sin y8.

Adding, we get

(1) sin (a -f iS)+ sin {a — 13)= 2 sin a cos jS.

Subtracting, we have

(2) sin (a -f /3) — sin (« — ^)= 2 cos a sin
ft.

Now, if we let a + /8 = P and a — fi = Q,

then « =^«, fi =^.
Therefore formulas (1) and (2) become

. P 4- O P — Osm P H- sm Q = 2 sm —:r_J!^cos——-^,
2 2

P 4- O . P— O
Sin P — sm Q = 2 cos ^ ^ sm——^.^

2 2

Similarly, starting with cos (a + /3) and cos (a — ft) and per-

forming the same operations, the following formulas result

:
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cos P + COS Q = 2 COS ^-±-2 COS ^^-=-2
2 2

COS P — COS p = - 2 sin "j" ^ sin ^
»

2 2
In words

:

the sum of two sines =
twice sin (half sum) times cos. (half difference),

the difference of two sines =
twice cos (half sum) times sin (half difference),*

the sum of two cosines =
twice cos (half sum) times cos (half difference),

the difference of two cosines =
minus twice sin (half sum) times sin (half difference).*

Example 1. Prove that

cos 3^ +cosa;^^^^g
sin 3 a; + sin x

for all angles for which both members are defined.

cos 3 a;+ cosx _ 2 cos ^ (3 x + a:) cos \ (3 a; — a;) _ cos 2 a; _ ^ « ^
sin 3 X + sin x 2 sin \ (3 x + a:) cos ^ (3 x — x)

~
sin 2 x

~

Example 2. Reduce sin 4 x + cos 2 x to the form of a product.

We may write this as sin 4 x + sin (90° — 2 x),which is equal to

2 ,i„
4a;4-90°-2»

^„3
4»-90° + 2a; ^ ^ ^„ ^^^. + x) COS (3 « - 45°).

2 2d

EXERCISES
Reduce to a product

:

1. sin 4 ^ — sin 2 ^. 4. cos 2 ^ + sin 2 6. 7. cos 3 x + sin 5 x.

2. cos + cos 3 d. 5. cos 3 ^ — cos 6 6. 8. sin 20° — sin 60°.

3. cos65 + cos2^. 6. sin (x 4- Ax) — sin X.

Show that

9. sin 20° + sin 40° = cos 10°.
^^ sin 15° + sin 75° __ ^^ g^o

10. cos 50° + cos 70° = cos 10°.
* sin 16° - sin 75°

a. sin 75° -sin 15° ^^^3Qo^ 13 sin 3 g- sin5g^_
^^^^^^

cos 75° + cos 15° cos 3 6 — cos 50

* The difference is taken, first angle minus the second.
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Prove the following identities :

14.
sin 4 ct -f- sin 3 ct _^^^ce jg sin « + sin /3 __ tan ^ (ce -H3)
cos 3 a — cos 4 a 2 ", sina — sin/3~tau ^ (a — ^)

4 e cos a + 2 cos 3 a + cos 5 a cos 3 a
JLO. = •

cos 3 « + 2 cos 5 a + cos 7 a cos 5 a

^rj cosct-cos/3 _ tan|(« + /3) ^g sin (n - 2) g + sin w g _
^^^ ^

cos a + cos ^ ctn i (a -|8)
' cos (n— 2)-0 - cosn^

Solve the following equations

:

19. cos 6 4- cos 5 ^ = cos 3 ^. 22. sin 4 — sin 2 ^ = cos 3 d.

20. sin ^ + sin 5 ^ =: sin 3 d. 23. cos 7 ^ — cos ^ = — sin 4 6.

21. sin 3 ^ + sin 7 ^ = sin 6 6.

142. Law of Tangents. A method for shortening computa-

tion will be presented in the next chapter. In applying this

method to the solution of triangles the formulas given below

are valuable. We shall state first the so-called law of tangents:

The difference of two sides of" a triangle is to their sum as the

tangent of half the difference of the opposite angles is to the tan-

gent of half their sum.

Proof. a^sin^,
5 sin 5 •

Hence, by proportion, we have

g — 6 _ sin ^ — sin ^
a 4- 6 sin ^ -f- sin 5

But

. ^ . ^ 2cos^i±^sin^:^ tan^^
sm ^ - sm J5 2 2 2

sin ^-f sin ^ o - A -\- B A — B . A~
2 sm — cos tan—

2 2

tan^^
Therefore

a-h^ 2_^
« + «> tan4+-§
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143. Angles of a Triangle in Terms of the Sides. Con-

^ struct the inscribed circle of the triangle

and denote its radius by r. If the perim-

eter a+ &4-c=2s, then (Fig. 130)

AE = AF=s- a,

.U-s-a^F B BD= BF= s-b.
Fig. 130. CD = CE = s - c.

Then tani^ = -^, tani.5 = -^^, taniC=^l-,
s—a s — b

^ s—c
where, from § 130,

-J(^-«)(g-^)(^-c)

' MISCELLANEOUS EXERCISES

1. Reduce to radians 65°, — 135°, — 300°, 20°.

2. Reduce to degrees tt, 3 tt, — 2 tt, 4 tt radians.

3. Find sin (a — /3) and cos (a + ^3) when it is given that a and /3 are

positive and acute and tan a = | and sec p = ^.
4. Find tan (a + /3) and tan (a — /3) when it is given that tan a = ^

and tan /3 = ^,

6. Prove that sin 4 a = 4 sin a cos a — 8 sin^ a cos a.

2
6. Given sin ^ = —^, and d in the second quadrant. Find sin 2 d,

V5
cos 2 ^, tan 2 ^.

Prove the following identities :

. 7. sin2a = -2iHL^. 8. cos2 « = ^ " ^^"'«

1 -f tan2 a 1 + tan'-^ a

9. sec2a = _5?^i«_ 10. tan«= "^"^"
.

csc2 a — 2 1 + cos 2 a

11. sin (a -\- j3) cos /3 — cos (a + p) sin /S = sin a.

12. sin 2 a + sin 2 )3 + sin 2 7 = 4 sin a sin /S sin 7, if a + j9 + 7 = 180°.

1 + tan -

la
co8« _ 2

1 — sin a I .. a
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14. 1 + tan a tan
^

15.

2

sin^ a + cos^ ct _ 2 — sin 2 ce

sin a + cos a "
2

16. «-H?l^ = 2cos2«.
sin 2 a

17. Arc cos f 4- Arc tan f = Arc tan W,

Solve the following equations

:

18. cos 2 a = cos^ a.

19. 2 sin a = sin 2 a.

20. cos 2 a + cos a = — 1.

21. sin a + sin 2 a + sin 3 a = 0.

22. sin 2 a — cos 2 a — sin a 4- cos a = 0.

23. Arc tan x + Arc tan (1 — x) = Arc tan |.

3

26. Arc tan ?-tl + Arc tan ^^ = 180° + Arc tan ( - 7).
x — \ X

26. Arc sin x + Arc sin- = 120°.
2

2 tr
27. Arcsina; + 2 Arccosx = -^•

3

In a right triangle ABC, right angled at (7, prove

28. sin2 ^ = £jZi?
. 29. cos^ ^ = .^±i: . 30. *tan ^ "

2 2c 2 2c 2 a + 6

31. Solve for x and ?/ the following equations :

ic sin a + ^ cos a = sin a,

X cos a — ?/ sin a = cos a.

32. Solve for x and y the following equations :

a; cos ^ — y sin ^ = sin ^,

X sin ^ + y cos ^ = cos d.

33. If 2 X is less than 90° and sinx=cos(2 x + 40°), find the value of x.

34. Find « so that the equation x^ + 2 x cos a + 1 = shall have equal

roots,

35. Find a so that the equation 3 x^ + 2 x sec a + 1 = shall have
equal roots.



CHAPTER VIII

THE LOGARITHMIC AND EXPONENTUL FUNCTIONS

144. The Invention of Logarithms. In the last two chap-

ters we have had occasion to do a considerable amount of

numerical computation. In spite of the fact that we have

confined these computations to comparatively small numbers

and have had the assistance of tables of squares and square

roots, the calculations have often been laborious.

To carry out by the methods thus far at our disposal the

computations involved in many of the problems of insurance,

engineering, astronomy, etc., would require a prohibitive

amount of labor. That it is now practicable jjo effect such

computations is largely due to the invention ©f logarithms by

John Napier (1550-1617), Baron of Merchjfeton, in Scotland.

As in the case of many epoch-making inventions, the funda-

mental idea of Napier was extraordinarily simple. It may be

explained as follows. Consider the function y = 2". We
readily obtain the following table of corresponding values

:

(1)

X 1 2 3 4 6 6 7 8 9 10 11 12

2/ = 2^ 2 4 8 16 82 64 128 256 512 1024 2048 4096

Now, since 2" • 2' = 2"+'', it is clear that, if we desire to ob-

tain the product of two numbers in the lower line of the table,

we need only add the two corresponding numbers in the upper

line (the exponents), and then find the number in the lower

212
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line which corresponds to this sum* For example, to find the

product of 128 x 16, we find from the table that the numbers

corresponding to 128 and 16 are 7 and 4, respectively; the sum

of the last pair is 11 and the number in the lower line corre-

sponding to 11 is 2048, which is the product sought. Or again,

to find 4096 -?- 512, we find the corresponding exponents 12 and

9 in the table, subtract (12 — 9 = 3), and find the required quo-

tient to be 8. How would you justify the latter procedure ?

While the fundamental idea here described is simple, con-

siderable insight was required to make the idea practicable.

For, the above table makes possible the finding of the product

of two numbers only when the numbers in question and

their product are to be found in the lower line of the table. In

order to be useful in practical computation it is obviously

necessary to construct a table which will contain every number,

or at least from which the corresponding " exponent " of any

number can easily be obtained either precisely or with a high

degree of approximation. Th^ problem confronting Napier

was to Jill in the gaps in the numbers of the lower line of the

table on p. 212, while preserving the fundamental property of

the table, yIz. that to the product of any two numbers of the lower

line corresponds the sum of the two corresponding numbers of the

upper line.

145. Extension of the Table. An examination of table (1)

reveals the following properties : (a) the values of x form an

arithmetic progression (A.P.), since every number after the

first is obtained by adding 1 to the preceding number
; (6) the

values of y form a geometric progression (G.P.), since every

number after the first is obtained by multiplying the preceding

number by 2. These considerations suggest the possibility of

extending the table in two ways.
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-5 -4 -3 -2 - 1
•

1 2 o 4 5 6
1

7

0.03126 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

In the first place, we may extend it to the left so as to make

the lower line contain numbers less than 2. To do this, we

need only subtract 1 successively from the numbers of the upper

line and divide by 2 successively the numbers of the lower

line. We then obtain a table extending in both directions

:

(2)

This table is still satisfactory. If we desire to multiply 128

by 0.0625, we add the corresponding numbers of the upper line,

namely, 7 and — 4 ; thus we obtain the number 3, which

according to the previous rule should give 128 x 0.0G25 = 8,

which is correct. That the rule still applies may be tested on

other products ; the fact that it does will be proved later.

In the second place we may find new numbers to fill the gaps

in the original table, by inserting arithmetic means between

the successive values of x and geometric means between the

successive values of y. Thus, if we take the following portion

of the preceding table

-2 -1 1 2 3 4

i i 1 2 1 4 8 IG

and insert between every two successive numbers of the upper

line their arithmetic, and between every two successive num-

bers of the lower line their geometric mean, we obtain the table

(3)

-2 -f - 1 -h i 1 3
2

5
-2 3 1 4

i ^\/2 h iV2 1 V2 2 2V2 4 4V2 8 8V2 16
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If the radicals are expressed approximately as decimals, this

table takes tlie form

-2.0 -1.5 - 1.0 -0.5 ' 0.5 1.0 1.5 2 2.5 3 3.5 4

0.25 0.35 0.50 0.72 l.OC 1.41 2.00 2.8S 4.00 5.66 8.00 11.31 16

x(AP.) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

yCG.R) 1.00 1.19 1.41 ' 1.68 2.00 2.38 2.83 3.36 4.00 ' 4.76
1

Repeating this process of inserting means, we get the follow-

ing table. To save space, we have begun the arithmetic pro-

gression with and the geometric progression with 1, and have

not carried the table as far as in the preceding case.

(4)

The rule for multiplying two values of y seems to apply also

to this table, at least approximately. For example, if we apply

the rule to find 3.36 x 1.19, we note that the sum of the cor-

responding values of x is 1.75 -f 0.25 = 2.00 and conclude that

3.36 X 1.19 = 4.00. Actual multiplication gives 3.36 x 1.19

= 3.9984. The discrepancy we may attribute to the fact that

the values of y other than 1, 2, 4 are only approximations to

the true values.*

The process used in constructing this table may be continued

indefinitely. It enables us to interpolate a new value of x be-

tween any two successive values of x and a new value of y

between the two corresponding values of y. But this means

that we can make the values of x and y as dense as we please,

in other words, we can make the difference between successive

values of y as small as we please. By continuing the process

In fact the rules for computing with approximate numbers would lead us

to write 4.00 in place of 3.9984 as we have no right to retain more than two

decimal places. See § 160.
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long enough we can make any number appear among the values

of y to as high a degree of approximation as we desire and our

intention of filling the gaps will then be attained. We must

now prove, however, that the rule for multiplication does really

hold in the extended table. Thus far we have merely verified

this rule for special cases.

EXERCISES

1. Assuming that the rule for multiplication applies, find by means of

table (4) the following products.

3.36 X 1.41, 1.68 X 2.38, (1.68)2, (1.19)6.

Check by ordinary multiplication.

146. Arithmetic and Geometric Progressions. The tables

constructed consist of an arithmetic progression one term of

which is the number (the terms of this arithmetic progression

we denoted by x) and a geometric progression one term of

which is the number 1 (the terms of this geometric progression

we denoted by y). Moreover, to every value of x corresponds a

definite value of y in such a way that to oj = corresponds 2/ = 1,

and that to each succeeding (or preceding) value of x corre-

sponds the succeeding (or preceding) value of y. Now suppose

that the common difference of the arithmetic progression is d

and that the common ratio of the geometric progression is r.-

The correspondence between the values of x and y would then

be exhibited in the following table.

(5)

We shall now prove that in this tahle^ to the product of any

two valiLes of y corresponds the sum of the two corresponding

values ofx.

X ... -md ... -3d -2d -d d 2d Sd ... nd ...

y ...
1

...
1 1 1

r
1 r r^ r8 r" ...



Vni, § 147] EXPONENTS— LOGARITHMS 217

If tlie two values of y are both, to the right of y = 1, for ex-

ample i/i = r^, y.2 = J*^, then the corresponding values of x are

pd and qd. To the product 2/12/2= ^^^'^ corresponds {p-\-q)d.

If the two values of y are both to the left of 2/ = 1, the proof is

similar. It is left as an exercise.

If one value is to the left of 2/ = 1, for example, y — l/r^, and

the other value is to the right, for example 2/2 = ''^j the cor-

responding values of x are — pd and qd respectively. The

product 2/12/2 is equal to (1/r^) r« = r^~^ if q> p, and is equal

to l/r^« if q<p. The value of x corresponding to 2/12/2 is

then {q — p)d/\i q> p and —{p — q)d ii q<,p. But {q — p)d

= — {p —q)d = qd -\-{— pd). The discussion of the case

p = q\^ left as an exercise. If one of the values of y is 1, the

desired result follows immediately. Why ?

In view of this theorem the validity of the rule used in the

last article for multiplication is established. For tables (2)

and (4) are both tables of the type (5), the former having

d = 1 and r = 2, the latter having d — 0.25 and r = V2 = 1.19

(approximately)

.

147. The Exponential Function (i^{a > 0). Let us now con-

sider the table

X — m ... -3 -2 - 1 1 2 3 ... n ...

y ...
1

a3

1

a2

1

a
1 a a2 a^ a'» ...

where a represents any positive number.* This table defines y

as a function of x. Morover, this table is a table of the type

(5) ; and all tables obtained by interpolating arithmetic means

between two successive values of x and the same number of

geometric means between the corresponding values of y are of

* The value a= 1 leads to trivial results. Hence, we assume also that a^ 1.
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the type (5). Thus if we interpolate q arithmetic means be-

tween x — and x = 1, and q geometric means between y —1
and y= a, we obtain the following table

:

X ... ... -1 -2 _1 1

Q

2
1 ...

y ...
1

...
1

a

1 1
1 la ^.'/;;^2 ...

V^f
i 1

X 1
9 + 1

Q

... 2 ...

. iv'ar' a {Vay^' ... a2 {VaY ...

which is a table of the type (5), with d = 1/q and r = va.

The function y oi x thus defined is y = a% for ic = 1, 2, 3, •••.

We are therefore led to define the expression a* for fractional

and negative values of x and for x = as follows

:

(1) aO = l.

(2) ai/« means ^o", where q^ is a positive integer.

(3) aP/^ means (Va)^, or its equal V^y where p and q

are positive integers.

(4) a-^ means 1/a**, where n is any positive rational number.

In view of the fundamental property of any table of type

(5), whereby to the product of any two values of y corresponds

the sum of the two corresponding values of x, we have

(t^ . av — flM+f

for^all values of u and v for which the expressions a", a", and

a""*"' have been defined.

The function ?/ = a* (a > 0) has now been defined for all

rational values of x. To complete the definition of this func-

* We should keep in mind that the symbol ^a (o>0) means the positive

gth root of a. Thus yfm = 2, not — 2.
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tion for all real values of a;, we must indicate the mean-

ing of a* when x is an irrational number. To carry this

definition through in all its details is beyond the scope of

an elementary course. But we have seen that any irrational

number may be represented approximately by a rational num-

ber, with an error as small as we please. (See § 29.) Thus

V3 is represented approximately by the rational numbers 1.7,

1.73, 1.732, ..-. Our previous definitions have given a definite

meaning, for example, to 2^-^, 2^-''^, 2'^-''^^, .... The values of the

latter expressions are by definition approximate values of 2^^.

We take for granted without proof the fact that the successive

numbers

(6) 2^'\ 21-7^ 21-"^, ...,

as the exponents represent closer and closer approxima-

tions to V3, approach closer and closer to a definite number.

This definite number is by definition the value of 2^. Similar

considerations apply to the definition of a^, where a is any

positive number and x is any irrational number. The principle

involved is briefly expressed as follows :

An approximate value of x gives an approximate value of a'.

The value of a* can he found as accurately as we please by using

a sufficiently accurate approximation to x.

The objection might be raised that the calculation of '2?''^ involves the

extraction of the 10th root of 2 and the calculation of 2^-'^ involves the

extraction of the 100th root of 2, etc., and perhaps we do not know how

to extract these roots. As a matter of fact we can calculate 2^^ as ac-

curately as we please by extracting square roots only. The processus as

follows : We know that \/3 = 1.7320 accurately to four decimal places.

Now by table (4), p. 215, we see that 2^-^-2M and 2'-" = 3.36. We carry

the computation to more places and have 2i«)oo =2.8284 and 2i-7500= 3.3636.

Now, 1.7320 lies between 1.5000 and 1.7500, the arithmetic mean of

which is 1.6250. The geometric mean of 2.8384 and 3 3635 is 3.0844

According to our previous definitions we have then 2i-<'25o = 3.0844.
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Inserting means between the last two results we have 2^-^^ = 3.2200.

By inserting arithmetic means between the properly selected exponents

and geometric means between the corresponding powers of 2 we can ulti-

mately obtain the value of 2i-^320, ^he results of the necessary steps are :

21.7188 :^ 3.2915, 21-7344 = 3.3274, 21-7266 = 3.3094, 2i-7305 = 3.3182,
21.7325 == 3.3228, 21-7315 = 3.3205, 2i-7320 = 3. 32 17.

The process here illustrated makes it possible to calculate 2^3 to as high

a degree of approximation as we please, since we can carry the computa-

tion to as large a number of decimal places as we please.

148. The Laws of Exponents. The function y = a'' (a > 0)

is now defined for all real values of x. This function is called

the exponential function of base a. The laws of exponents

I. a^ ' a^ = a^^^ ]

II. (cr*)'' = a«*» , a > 0, 6 > 0,

III. a«* . b^ = (ab)^
'

which were derived previously (§ 42) for positive integral ex-

ponents, hold for all real values of u and v. The first of these

we have already derived. The last two may be readily proved

for negative, fractional, and zero exponents by using the defini-

tion of a''.

Thus by definition, if it = p/q and v = 71, where p, q, n are

positive integers, we have
p pn

If u is any positive rational number and v=p/qf where p, q are

positive integers, we have,
up

(a^y = (a«)« = -Via'^y = -^/a"^ = a «" = a"".

If u = — n, where n is a positive rational number, and if

V =p/q, where p and q are positive integers, we have

(a-y = (a-«)^/'=/^\/iY=—i— = -i = a" 7 = a«^

If u is any rational number and v =— n, where n is any
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positive rational number,

221

(a«)''=(a'*)-" ———=— = a""" = a*

If either w or v is zero, the result is immediate. Hence the law

II is proved for rational exponents.

A similar proof of the law III is left as an exercise.

149. The Graph of the Exponential Function. Figure 131

represents the graph of the function y = 2*, drawn from the

tabular representation given in the first table on p. 215.
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It will be noted that all curves of the system ?/ = a* pass

through the point (0, 1). By hypothesis a > 0. If a > 1, the

function a^ is an increasing function ; while if a < 1, the func-

tion is a decreasing function. Figure 132 shows some of the

curves of the system y = a*.
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EXERCISES

1. Calculate the value of the exponential function 3*

(a) for the values of a; = 1, 2, 3, 4, 0, — 1, — 2, - 3, — 4
;

(b) for the values x = 0.5, 1.5, 2.5, 3.5, - 0.5, - 1.5, - 2.5
;

(c) for the values x = 0.25, 0.75, 1.25, 1.75.

Arrange the results in the form of a single table.

2. Show how to use the table constructed in Ex. 1 to solve problems in

multiplication, division, raising to powers, and extracting roots. Make up
your own problems and check your results by the methods of arithmetic.

3. Describe in detail how you would find the value of 3 . Between

what two numbers in the table found in Ex. 1 does the value of 3^^ lie ?

4. Construct the graph of y = 3* for values of x between — 2 and 3.

6. What is meant by a^ ? x^ ? (l/y)^ ?

6. What is the value of 8^ ? 27^ ? (0.001)^ ? (i)8 ?

7. Simplify (18)^ -i- (3)^'

8. Perform the following indicated operations :

(«) (^¥. w (^>^-K
\x!^y~^y

(6)(aWc¥. (,)^^_,+ 2,.i)..

(c) (32x02/10)^. (/) (2^)*.

9. Multiply

(a) {a-^ + a)ia-^-a). (6) (a-i-ao)(a-2-a'0(a-»-aO-

(c) (a;^-y^)(a;« -y^).

(d) (x-i 4- x~^y~^ + jr^Xx-i - x~^y~^ + y-^).

8 2 12 1

(e) (a* - 2 a* + 3 a*) (2 a'- a* + 2).

8 2 12 1

(/) (ir - oir + 3 6y« - c) (jr + 6y« - cyO).

10. Divide

(a) (a;+l)by (v^ + 1). (&) (aj^' - y*) by (x^- yi^).

(c) (J - a6^ + ah - b^) by (a^ - 6^).

(d) (a-i + 4 a^ + 6 a^ + 4 a^ + a*) by (a"^ + a).
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11. Simplify

(a) 12" + I
- 9-' +^ + 27*. (6) (

'"'P ]'*.

^64 m-^p^

12. Simplify

13. Which of the two numbers V5 and ^/8 is the greater and why ?

14. Simplify

(2^ x2^)-f-(54)i

15. Prove that, if

_ 1 Tx^ _ x"^"|

2Lj „-d'y y
then

2vxy

16. Reduce to simplest form

(c) (a^ + X*) (a2 _ x^)~^ - (a2 _ x^)^.

150. Definition of the Logarithm. The logarithm of a

number JV to a base 6 (6 > 0, ^^t: 1) is the exponent x of

the power to which the base h must be raised to produce the

number N.

That is, if

then
X — logbN.

These two equations are of the highest importance in all work

concerning logarithms. One should keep in mind the fact

that if either of them is given, the other may always be

inferred.
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Tlie graph of the logarithm function (Fig. 133) is obtained

from the graph of the corresponding exponential function by

simply turning the latter graph over about the line through

the origin bisecting the first and third quadrants.

Y
-

,
<-.— *

^^
^x"

'"

/^

/
f
1 J 1 > 1s ^^x\

1

V = z ff^ X

.

_ _ _J _
Fig. 133

EXERCISES

1. When 3 is the base what are the logarithms of 9, 27, 3, 1, 81, ^,

2. Why cannot 1 be used as the base of a system of logarithms ?

3. When 10 is the base what are the logarithms of 1, 10, 100, 1000 ?

4. Find the values of x which will satisfy each of the following

equalities :

(a) logs 27 = X. (d) loga a = x. (g) logs x = 6.

(6) log^3 = 1. (e) logal = x. {h) logssx = i
(c) log, 6 = i. (/) logaij^r = «• (0 log.ooi x = .00001.

6, Find the value of each of the following expressions

:

(a) loga 16. (c) logesi-g. (e) log26l26.

(6) log34a49. (d)log2Vl6. (/) log2^.
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151. The Three Fundamental Laws of Logarithms. From
the properties of tlie exponential function (p. 220) we derive

the following fundamental laws.

I. Tlie logarithm of a product equals the sum of the logarithms

of its factors. Symbolically,

lege, MN= logft Af+ logft N.

Proof. Let logj,M= x, then 6* = M. Let log^ N~y, then

b"=N. Hence we have MN= ft*"^", or

logj,i¥iV=a; + 2/, i.e. \o^^,MN=\og^,M+\o^^N.

II. The logarithm of a quotient equals the logarithm of the

dividend minus the logarithm of the divisor. Symbolically

M
^^Sft TT= logftM — logft N.N

Proof. L^t logj, Jf= x, then b' = M. Let logj, -^= y, then

h" = N. Hence we have M/N= &*"»', or

M M^og,—=x-y, i.e. log, — = log,Jf-log,JV

IIL T%e logarithm of the pth power of a number equals p
times the logarithm of the number. Symbolically

log6MP = />log5M.

Proof. Let log^M^x, then 6^ = M. Raising both sides

to the pih. power, we have b^ = M^. Therefore

logj,M^ =px=p log, M.

From law III it follows that the logarithm of the real positive

nth root of a number is one nth of the logarithm of the number.

Q
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EXERCISES

1. Given logio 2 = 0.3010, logio 3 = 0.4771, logio 7 = 0.8451, find the

value of each of the following expressions:

(a) logio 6. (/) logio 6.

[Hint: logio 2 X 3=logio 2+logio3.] [Hint : logio5 = logio V-]

(6) logio 21.0. (.9) logio 150.

(c) logio 20.0. W logio Vli.

{d) logio 0.03. (i) logio 49.

(«) logio 1. U) logio V2V7^.

2. Given the same three logarithms as in Ex. 1, find the value of each

of the following expressions:

f^\ i«„ 4 x5 x7 ., . i^„ 5 X 3 X 20 ,. , ^ 2058

{d) logio (2)25. (e) logio (3)8(5)6. (/) logio (28)(|).

152. The Systems most Frequently Used. From the defi-

nition of a logarithm (§ 150) any positive number except 1 can

be used as the base of a system of logarithms. As a matter of

fact, however, the numbers generally used are (1) a certain

irrational number which is approximately equal to 2.71828

and is denoted by e and (2) the number 10. Logarithms to the

base 6 are important in certain theoretical problems ; loga-

rithms to this base are called natural. For numerical compu-

tation it will be seen presently that the base 10 has numerous

advantages. Since different systems of logarithms are in use,

it is important to know how to change from one system to

another. The following law explains how this can be done.

IV. The logarithm of a numberM to the base b is equal to the

logarithm ofM to any base a, divided by the logarithm of b to the

ba^e a. Symbolically,

lOga O
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Proof. Let logj, M=x, then ¥ — M. Taking the logarithms

of both sides to the base a, we have

log^ ?>=^ = log„ 3f, or a; log„ 6 = log, 3f,

log« h

153. Logarithms to the Base 10. Logarithms to the base

10 are known as common logarithms, or as Briggian logarithms,

after Henry Briggs (1556-1631) who called attention to the

advantages of 10 as a base. These advantages appear below.

If 10 is the base, log 10 = 1, log 100 = 2, log 1000 = 3, etc.

It follows that if a number be multiplied by 10, or by any

positive integral power of 10, the logarithm of the number is

increased by an integer. In other words, the shifting to the

right of the decimal point in a number changes only the in-

tegral part of the logarithm and leaves unchanged the decimal

part of the logarithm.

An example will make this clear. Given logio 2 = 0.30103, we have

logio 20 = 1.30103, logio200 = 2.30103, etc. Or, again, given logio 4.5607

= 0.65903, we have logio 45.607 = 1.65903, logio 456.07 = 2.65903,

logio 4560.7 = 3.65903, logio 45607.0 = 4.65903.

It should be clear from these examples that the decimal part

of the logarithm of a number greater than 1 in this system

depends only on the succession of figures composing the num-

ber, irrespective of where the decimal point is located ;
while

the integral part of the logarithm of the number depends

simply on the position of the decimal point.

The decimal part of a logarithm is called its mantissOj the

integral part its characteristic. In view of what has been said

above only the mantissas of logarithms to the base 10 need be

tabulated. The characteristic can be found by inspection.

This follows from the following considerations.
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The common logarithm of a number between 1 and 10 lies

between and 1.

The common logarithm of a number between 10 and 100 lies

between 1 and 2.

The common logarithm of a number between 100 and 1000

lies between 2 and 3.

The common logarithm of a number between 10" and lO'*'^^

lies between n and n + 1.

It follows that a number with one digit (^0) at the left of

the decimal point has for its logarithm a number equal to + a

decimal ; a number with two digits at the left of its decimal

point has for its logarithm a number equal to 1+ a decimal ; a

number with three digits at the left of the decimal point has

for its logarithm a number equal to2-f- a decimal, etc. We
conclude, therefore, that the characteristic of the common loga-

rithm of a number greater than 1 is one less than the number of

digits at the left of the decimal point.

Thus, as before, logio 456.07 = 2.65903.

The case of a logarithm of a number less than 1 requires

special consideration. Taking the numerical example first con-

sidered above, if logjo 2 =0.30103, we have logio 0.2= 0.30103-1.

Why ? This is a negative number, as it should be (since the

logarithms of numbers less than 1 are all negative, if the

base is greater than 1). But, if we were to carry out this

subtraction and write logjo 0.2 = — .69897 (which would be

correct)^ it would change the mantissa, which is inconvenient.

Hence it is customary to write such a logarithm in the form

9.30103 - 10.

If there are n ciphers immediately following the decimal

point in a number less than 1, the characteristic is — n — 1.

For convenience
J if n < 10, we write this as (9 — n) — 10. This
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characteristic is written in two parts. The first part 9 — n is

written at the left of the mantissa and the — 10 at the right.

In tlie sequel, unless the contrary is specifically stated we

shall assume that all logarithms are to the base 10. We may
accordingly omit writing the base in the symbol log when there

is no danger of confusion. Thus, the equation log 2 = 0.30103

means logjo 2 = 0.30103.

154. Use of Tables. Since the characteristic of the loga-

rithm of a number may be found by inspection, a table of

logarithms contains only the mantissas. To make practical

use of logarithms in computation it is necessary to have a con-

veniently arranged table from which we can find (a) the

logarithm of any given number, and (6) the number corre-

sponding to a given logarithm. Tables of logarithms differ

according to the number of decimal places to which the man-

tissas are given and also in incidental details. However, the

general principles governing their use are the same. These

principles are explained for a four-place table (p. 536) by the

following examples.

Problem A. To find the logarithm of a given number,

(1) When the number contains three or fewerfigures.

Example. To find the logarithm of 42.7.

First, by §153, the characteristic is 1. We accordingly write (provi-

^'°°^'y^
log42.7 = l.

Next we look up in the tables the mantissa corresponding to the succes-

sion of figures 4, 2, 7. We run a finger down the first column of the

table until we reach the figures 4, 2, hold it there while with another

finger we mark the column headed with the third figure, 7. At the

intersection of the line and column thus marked, we find the desired

mantissa : 6304, The desired result is then

log 42.7 = 1.6304.



230 MATHEMATICAL ANALYSIS [VIII, § 154

To find the logarithm of 0.0427, we should proceed in precisely the

same way, the only difference being that the characteristic is now 8 — 10.

H®^<^®' log 0.0427 = 8.6304 - 10.

(2) When the number contains four significant figures

Example. To find log 32.73.

We see that again the characteristic is 1, and we write provisionally

log32.73 = l.

Now, the mantissa of log 32.73 lies between the mantissas of log 32. 70 and
log 32.80; i.e. (from the table) between 5145 and 5159. The difference

between these two mantissas (called the tabular difference at that place in

the table) is 14, und this difference corresponds to a difference in the

numbers of .10. According to the principle of linear interpolation,* the

difference in the mantissas corresponding to a difference in the numbers
of .03 is 14 X .3 = 4.2 or (rounded) 4. The mantissa corresponding to

3273 is then 5145 + 4 = 6149, and we obtain

log 32.73 = 1.5149.

Problem B. To find the number corresponding to a given

logarithm. Here we simply reverse the preceding process.

Example. To find the number whose logarithm is 0.8485.

We first seek the mantissa 8485 in the table. We find that it lies be-

tween 8482 and 8488, corresponding respectively to the successions of

figures 7050 and 7060. The tabular difference here is 6, while our differ-

ence, i.e. the difference we have to account for (8485 — 8482) is 3.

Hence the corresponding difference in the numbers is | of 10 or 6. Hence
the succession of figures in the number sought is 7055. Since the char-

acteristic is 0, the number sought is 7.055. Or, log 7.055 = 0.8485.

If the mantissa is found exactly in the table, of course no interpolation

is necessary. Thus the number whose logarithm is 9.7348 — 10 is 0.5430.

EXERCISES

1. Find the logarithms of the following numbers from the table on

pp. 536-7 : 482, 26.4, 6.857, 9001, 0.5932, 0.08628, 0.00038.

2. Find the numbers corresponding to the following logarithms

:

2.7935, 0.3502, 7.9699 - 10, 9.5300- 10, 3.6698, 1.0958.

* One should convince oneself that the conditions for linear interpolatiou

are satisfied by this table. In fact, it is readily seen that for several numbers
immediately preceding and following 327, the tabular differences are 13 and 14.
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155. Use of Logarithms in Computation. The way in which

logarithms may be used in computation will be sufficiently ex-

plained in the following examples. A few devices often neces-

sary or at least desirable will be introduced. The latter are

usually self-explanatory. Reference is made to them here, in

order that one may be sure to note them when they arise.

The use of logarithms in computation depends, of course, on

the fundamental properties derived in § 151.

Example 1. Find the value of 73.26 x 8.914 x 0.9214.

We find the logarithms of the factors, add them, and then find the

number corresponding to this logarithm. The work may be arranged as

follows :

Numbers Logarithms

73.26 (->) 1.8649

8.914 (-» 0.9501

0.9214 (-» 9.9645 - 10

12.7795-10

601.9 ^ws. ' (^) 2.7795Product

Example 2. Find the value of 732.6 ^ 89.14.

Numbers Logarithms

732.6 (^^) 2.8649

89.14 (->) 1.9501

Quotient = 8.219 Arts. (<-) 0.9148

Example 3. Find the value of 89.14 -- 732.6.

Numbers Logarithms

89.14 (->>) 11.9601 - 10

732.6 (-^) 2.8649

Quotient = 0.1217 Ans, (<~) 9.0852 - 10

Example 4. Find the value of
763.2 x 21.63

Whenever an example involves several different operations on the

logarithms as in this case, it is desirable to make out a blank form. When
a blank form is used, all logarithms should be looked up first and entered

in their proper places. After this has been done, the necessary opera-

tions (addition, subtraction, etc.) are performed. Such a procedure

saves time and minimizes the chance of error.
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Form
Numbers Logarithms

763.2 (-»
21.63 (-» (+).....

product

986.7

Ans.
(-» (-) ."

'.'.'.

.... (<-)

Form Filled In

Numbers Logarithms

763.2 (->) 2.8826

21.63 (->) 1.3351

product 4.2177

986.7 (->) 2.9942

16.73 Ans. i<-) 1.2235

Example 5. Find (1.357)6.

Numbers Logarithms

1.357 (->) 0.1326

(1.357)6 := 4.602 Ans. (-^) 0.6630

Example 6. Find the cube root of 30.11.

Numbers Logarithms

30.11 (_>) 1.4787

y/SOAl = 3.111 Ans. «-) 0.4929

Example 7. Find the cube root of 0.08244.

Numbers Logarithms

0.08244 (->) 28.9161-30
v^O.08244 = 0.4352 Ans. (-^) 9.6387 - 10

EXERCISES

Compute the value of each of the following expressions using the table

on pp. 536-537.

1. 34.96 X 4.65. 5. (34.16 x .238)2.

2. 518.7 X 9.02 x .0472. 6. 8.572 x 1.973 x (.8723)8.

„ 0.5683

0.3216

6.007 X 2.483

6.524 X LUO'

7. 648.8

^(21.4)2

\2791
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9.

10.

11.

J
2.8076X 3.184

^ (2.012)3

»/2941 X 17^32

'>'2173 X 18.76*

\/0. 00732

V735 ^^

12, (20.027)i. (2.01)i

17. The stretch s of a brass wire when a weight m is hung at its free

end is given by the formula ,

where m is the weight applied in grams, g = 980, I is the length of the

wire in centimeters, r is the radius of the wire in centimeters, and yfc is a

constant. If m = 844.9 grams, I — 200.9 centimeters, r = 0.30 centi-

meters when s = 0.056, find k.

18. The crushing weight P in pounds of a wrought iron column is given

by the formula -^ 55

P = 299,600^^,

where d is the diameter in inches and I is the length in feet. What weight

will crush a wrought iron column 10 feet long and 2.7 inches in diameter ?

19. The number n of vibrations per second made by a stretched string

is given by the relation . ,—
2lM m'

where I is the length of the string in centimeters, ilf is the weight in grams
that stretches the string, m the weight in grams of one centimeter of the

string, and g =980. Find n when i{f= 5467.9 grams, Z = 78.5 centi-

meters, m = 0.0065 grams.

20. The time t of oscillation of a pendulum of length I centimeters is

given by the formula

t = rJ-L.
>'980

Find the time of oscillation of a pendulum 73.27 centimeters in length.

21. The weight w in grams of a cubic meter of aqueous vapor saturated

at 17° C. is given by the formula

^ ^ 1293 X 12.7 X 5

computer.
(1+M)(760x8)-
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156. Exponential Equations. An equation in which the

unknown is contained in an exponent is known as an exponen-

tial equation. Some such equations may be solved by taking

the logarithms of both sides after the equation has been

properly transformed.

2x4-1
Example 1. Solve the equation 3 + 7 = 15.

Transposing the 7 and taking logarithms of both sides we obtain

{2x + l)log3 = log8.

Hence we find

^^iH-^^ij.
2Llog3

Example 2. Money is placed at interest, compounded annually. Find

a formula for the amount at the end of n years. Also a formula* giving

the number of years necessary to produce a given amount.

Let C be the original capital and r the given rate of interest {i.e. if

the interest is 5 per cent, r = 0.05). The amount A\ at the end of the

first year is
^ ^ ^ ^,,Ai= G+ Cr= C{\ + r).

At the end of two years we have

^2 = ^1(1 + = 0(1 + 02.

At the end of n years, the amount is

A=A,= G{\^rY.

This is the formula required. To find w, given A, O, r, we take the

logarithms of both sides and find

EXERCISES

1. Solve for x the equation 2^ = 5.

2. Solve for y the equation 3w + 2 = 9.

3. Solve for x and y the simultaneous equations S^+v = 4, 2*~v = 3.

4. Solve for x and y the simultaneous equations 2*+f = 6y, 3*-^ = 2^+^

6. Find the amount of $1000 in 25 years at 6 per cent compound
interest, compounded annually.
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^ 6. Find the amount of $ 600 in 10 years at 4 per cent compound inter-

est, compounded semiannually.

7. In how many years will a sum of money double itself at 5 per cent

interest compounded annually ? semiannually?

8, A thermometer bulb at a temperature of 20° C. is exposed to the air

for 15 seconds, in which time the temperature drops.4 degrees. If the

law of cooling is given by the formula 6 = ^oe~^S where is the final tem-

perature, do the initial temperature, e the natural base of logarithms, and

t the time in seconds, find the value of b.

MISCELLANEOUS EXERCISES

1. "What objections are there to the use of a negative number as the

base of a system of logaiithms ?

2. Show that a^^g^"^ = x.

3. Write each of the following expressions as a single term :

(a) log x-\-\ogy — log z. (6) 3 log a; — 2 log y + 3 log z.

(c) 3 log a - log (x + y)- I log (ex + d)+ log VwT~x.

4. Solve for x the following equations :

(a) 2 log2 X -h log2 4 = 1. (c) 2 logio x — 3 logio 2 = 4.

(b) logs « - 3 logs 2=4. {d) 3 logs x + 2 loga 3=1.

5. How many digits are there in 235 ? 3142 ? 312 ^28?

6. Which is the greater, (il)^^^ or 100 ?

7. Find the value of each of the following expressions. (See § 152.

)

(a) logeSS. (6) logs 34. (c) log7 246. (cZ) logi3 26.

8. Prove that logb a • logo b = 1.

9. Prove that

log,
x-{-Vx^-l ^ 2 log, lx+ v^^^l].
X — y/x'^ — 1

10. The velocity v in feet per second of a body that has fallen s feet is

given by the formula v = \/64.3s.

What is the velocity acquired by the body if it falls 45 ft. 7 in. ?

11. Solve for x and y the equations : 2^ = IGv, aj + 4 y = 4.



CHAPTER IX

NUMERICAL COMPUTATION

I. ERRORS IN COMPUTATION

157. Absolute and Relative Errors. In § 29 we noted that

the numerical result of every observed measurement is an

approximation. The difference between the exact value of

the magnitude and this observed value is a concrete number

called the absolute error* Often the absolute error is not the

most serviceable measure of the precision of a measurement.

The relative error, which is defined as the ratio of the absolute

error to the exact value, is often found more serviceable. Since

the relative error is a ratio, it is an abstract number, and is

therefore sometimes expressed in per cent. For example, if

the diagonal of a square 10 in. on a side be measured and

and found to be 14.1 in., the absolute error is less than 1/10

of an inch. The relative error is less than (1/10) -^ 10 \/2

= 1/141, approximately, le. less than 0.71 per cent.

158. Rounded Numbers. Significant Figures. When the

result of a measurement is expressed in the decimal notation,

a generally adopted convention makes it possible to determine

the degree of precision of the measurement from the number

of significant figures contained in the number expressing the

measure. This convention simply specifies that no more digits

shall be written than are (probably) correct. Thus a measure-

* The absolute error is therefore positive or negative according as the ob-

served value is too small or too large.

236
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ment of a length, expressed as 14.1 in. means that the measure

is exact to the nearest tenth of an inch. If on the other hand

the measurefment of this length were exact to the nearest

hundredth of an inch, the measure would have been expressed

by the number 14.10.*

We should note, then, that the two numbers 14.1 and 14.10

do not mean precisely the same thing, when they express the

result of a measurement.

Again we may note that the absolute errors involved in the

expression 4371.52 ft. and 42.81 ft. are each less than one

hundredth of a foot ; whereas the relative error is in the first

case less than 1/437152 and in the second only less than

1/4281.

Sometimes we are furnished with numbers expressing meas-

ures which are given with greater accuracy than we can use, or

care to use. Thus suppose we want to express a measured

length of 3.5 in. in terms of centimeters. We find in a table

of equivalent lengths that 1 in. = 2.54001 cm. It would be

obviously absurd to use this expression as it stands. We
accordingly round it off to 2.54 or even to 2.5 and find that 3,5

in. = 8.9 cm. If, on the other hand, we wish to express 3.50000

in. in centimeters, we should have to use the value 2.54001.

A number is rounded off by dropping one or more digits at

the right, and, if the last digit dropped is 5% 6, 7, 8, or 9, in-

creasing the preceding digit by l.f Thus the successive

approximations to tt obtained by rounding off 3.14159 .- are

3.1416, 3.142, 3.14, 3.1, 3.

* In other words x = 14.1 means that the exact value of x lies between 14.05

and 14.15; and x = 14.10 means that the exact value of x lies between 14.095

and 14.105.

t In rounding off a 6, computers use the following rule : Always round off

a 6 to an even digit. Thus 1.415 would be rounded to 1.42, whereas 1.445

would be rounded to 1.44. The reason for this rule is that, if used con-

sistently, the errors made will in the long run compensate each other.
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The significant figures of a number may now be defined as

the digits 1, 2, 3, -, 9 together with such zeros as occur

between them or as have been properly retained in rounding

them off. Thus 34.96 and 3,496,000 are both numbers of four

significant figures. On the other hand 3,496,000.0 has eight

significant figures, since the in the first decimal place accord-

ing to the convention adopted means that the number is exact

to the nearest tenth. This zero is then essentially a digit

properly retained in rounding off, and should be counted as one

of the significant figures.

Confusion can arise in only one case. For example, if the

number 3999.7 were rounded by dropping the 7, we should

write it as 4000 which, according to the rule just given, we

would consider as having only one significant figure, whereas in

reality we know from the way in- which the number was ob-

tained that all four of the figures are significant. When such

a case arises in practice we may simply remember the fact, or

we can indicate that the zeros are significant by underscoring

them, or by some other device. Computers adopt devices of

their own to avoid errors in such cases.

159. Computation with Rounded Numbers. Addition.

Since the (absolute) error of any approximate number can be

at most one half the unit represented by the last digit at the

right, the sum of n such numbers can be in error by at most

n/2 times the unit represented by the last figure. These con-

siderations lead to the following convention : in adding a

column of approximate numbers first round off the given

numbers so that not more than one column at the right is

broken ; round off the sum so that the last figure to the right

comes in the last unbroken column. This last figure is then

uncertain. Nevertheless, it is usually retained temporarily.

As a matter of fact, even the figure preceding this last one is
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not certain, since the errors may accumulate in adding several

numbers.

Eor example, in adding 21.64

3.8576

5.259743

10.31

we first round off

:

21.64

3.858

5.260

10.31

41.068 = 41.07

The final sum is written 41.07, but even the last figure 7 is

open to question. Show that the true result may be as low as

41.06 or as high as 41 .08.

To retain all the figures in the second and third of the num-

bers originally given would be absurd and would give in the

result a misleading pretense of accuracy which does not exist

in fact.

In subtraction round off similarly.

160. Multiplication. Let a and b be approximate numbers

and let their relative errors be a and ft
respectively. The

exact numbers are then (nearly) a -{- aa and b + bft. Their

product is
a6 + «6«+a&;8 + aJ«j8.

The error committed in using ab as the product is then

ab{a + ^ + «^)

and the relative error is therefore nearly

Now in practice a and /3 are small fractions, so that aft is in-

significant when compared with a + /8. (For example, if a and
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/3 are both equal approximately to 0.001, ap is equal approxi-

mately to 0.000001.) Hence, we conclude that the relative

error of the product of two numbers is approximately equal to the

sum of the relative errors of the factors.

Hence, in finding the product of two approximate numbers,

round off so that the two numbers have the same number of

significant figures, and retain only this number of significant

figures in the product* Even then the last figure retained may

be unreliable.

Example. Multiply 27.17 by^3, 14159. Round off the second factor to

3.142, and multiply:
27.17 X 3.142

5434

10868

2717

8151

85.36814 = 85.37

Even the figure 7 may be in error. Show that the true answer may be as

low as 85.35.

The labor involved in such a multiplication may be considerably re-

duced by slightly modifying the method used, as follows :

After having equalized the number of significant fig-

ures annex a zero to the multiplicand. Multiply by the

first figure on the left of the multiplier. Drop the last

figure of the multiplicand and multiply by the second

figure of the multiplier. Drop the next figure of the

multiplicand and multiply by the third figure of the

multiplier (but "carry" the amount from the figure

dropped : thus .in the example having dropped the 7 and multiplying by 4,

we say 4 x 7 = 28, carry 3, 4 x 1 = 4, +3 = 7, which is the first figure

we write), and so on, arranging all the partial products so that the last

figures from the left fail into the same vertical column ; then add in the

usual way.

* Since ^^ = 3.1428571, while tt = 3.1415927, the value y may be used for ir

when the uncertainty of the other factors in a product in which it appears

is greater than 1 part in 3000 (approximately)

.

27.170 X 3.142

81510

2717

1087

64

85368 =: 85.37
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161. Division. In case either the dividend (iV) or the

divisor (D) is an approximate number, the following shortened

method may be used :

1. Equalize the relative accuracy of N and D ; but if D is

larger at the left, keep one extra figure on JV (as in the example

below).

2. Divide as in long division, but drop successive figures in

Z>, instead of adding successive zeros to N.

Example. Find 295.679 -r- 7.53. (As 7 is greater than 2, we retain

four figures in the dividend.)

7.53 1 295.7 [39.3

225 9 [3 X 753]

69 8 [divide by 75, gives 9]

67 8 [9x3 = 27, carry 3 ; 9 x 75 = 675, + 3 = 678]

2 [divide by 7, gives 3 (nearer than 2)]

EXERCISES

1. Add the following numbers, each representing the result of a meas-
urement: 25.62, 341.718, 2.62394, 28.7125.

2. Express 5.216 inches in centimeters.

3. Express 53.291 cm. in inches.

4. A rectangular table top is measured, and is found to be

2'4".5 X 3'6".4. Find its area. Find the error caused in this area if the

measurements are each O'M too short. Find the relative error in the

area.

5. Assuming that you can estimate the length and the breadth of a

room which is about 15' by 18' to within 2', how nearly can you estimate

its area ?

6. Assuming that you can measure each of the dimensions of the room

of Ex. 5 with a yardstick to within 1" error, how nearly can you find the

area of the floor ? If the height of the room is about 10', how nearly can

you find the volume of the room by measurement ?

7. Assuming that you can measure the radius of a circle about 6" in

diameter to within 0".l error, how nearly can you find its area ? How
nearly could you find by measurement the volume of a cylinder about 5'

high and about 5" in diameter ?
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II. LOGARITHMIC SOLUTION OF TRIANGLES

162. Logarithmic Computation. We have already had

occasion to observe that many computations in engineering,

astronomy, etc., are carried out by means of logarithms. Jn

the last chapter a few examples of the use of logarithms in

computation were given in connection with a four-place table.

Such a table suffices for data and results accurate to four sig-

nificant figures. When greater accuracy is desired we use a

five-, six-, or seven-place table.

The methods used in connection with such a table differ

slightly from those used ordinarily with a four-place table.

Accordingly we take up briefly at this point some problems in-

volving computation with a five-place table of logarithms.

No subject is better adapted to illustrate the use of logarith-

mic computation than the solution of triangles, which we shall

consider in some detail. Five-place tables and logarithmic

solutions ordinarily are used at the same time, since both tend

toward greater speed and accuracy.

163. Five-place Tables of Logarithms and Trigonometric

Functions. The use of a five-place table of logarithms differs

from that of a four-place table in the general use of so-called

" interpolation tables " or " tables of proportional parts," to facil-

itate interpolation. Since the use of such tables of proportional

parts is fully explained in every good set of tables, it is unnec-

essary to give such an explanation here. It will be assumed

that the student has made himself familiar with their use.*

In the logarithmic solution of a triangle we nearly always

need to find the logarithms of certain trigonometric functions.

* For this chapter, such a five-place table should be purchased. See, for ex-

ample, The Macmillan Tables, which contain all the tables mentioned here

with an explanation of their use.
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For example, if the angles A and B and the side a are given,

we find the side b from the law of sines given in § 125,

, a sin B '

b = —— -'

sin A

To use logarithms we should then have to find log a, log (sin B)

and log (sin A). With only a table of natural functions and a

table of logarithms at our disposal, we should have to find first

sin Ay and then log sin A. For example, if A = 36° 20',

we would find sin 36° 20' = 0.59248, and from this would find

log sin 36° 20' = log 0.59248 = 9.77268 - 10. This double use

of tables has been made unnecessary by the direct tabulation

of the logarithms of the trigonometric functions in terms of

the angles. Such tables are called tables of logarithmic sines,

logarithmic cosines, etc. Their use is explained in any good

set of tables.

The following exercises are for the purpose of familiarizing

the student with the use of such tables.

EXERCISES

1. Find the following logarithms :
*

(a) log cos 27° 40'.5. (d) log ctn 86° 53'. 6.

(6) log tan 85° 20'. 2. (e) log cos 87° 6'.2.

(c) log sin 45° 40'.7. (/ ) log cos 36° 53'.3.

(d) log sin A = 9,78332 - 10.

(e) log ctn ^A = 0.70352.

(/) log tan J ^ = 9.94365 - 10.

87325

4. Given a triangle ABC, in which ZA = 32°, ZB = 27°, a - 5.2, find

b by use of logarithms.

* Five-place logarltbms are properly used when angles are measured to the

nearest tenth of a minute. For accuracy to the nearest second, six places

should be used.

2. Find A , when

(a) log sin A = 9.81632 --10.

(6) log cos A = 9.97970 --10.

(c) log tan ^ = 0.45704.

3. Find^, iftan. = 4^«-\2^
Q7Q.

89.710
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164. The Logarithmic Solution of Triangles. The effective

use of logarithms in numerical computation depends largely on a

proper arrangement of the work. In order to secure this, the

arrangement should be carefully planned beforehand by con-

structing a blank form, which is afterwards filled in. Moreover

a practical computation is not complete until its accuracy has

been checked. The blank form should provide also for a good

check. Most computers find it advantageous to arrange the

work in two columns, the one at the left containing the given

numbers and the computed results, the one on the right contain-

ing the logarithms of the numbers each in the same horizontal

line with its number. The work should be so arranged that

every number or logarithm that appears is properly labeled

;

for it often happens that the same number or logarithm is used

several times in the same computation and it should be possible

to locate it at a glance when it is wanted.

The solution of triangles may be conveniently classified

under four cases

:

Case I. Given two angles and one side.

Case II. Given two sides and the angle opposite one of the

sides.

Case III. Given two sides and the included angle.

Case IV. Given the three sides.

In each case it is desirable (1) to draw a figure representing

the triangle to be solved with sufficient accuracy to serve as a

rough check on the results
; (2) to write out all the formulas

needed for the solution and the check
; (3) to prepare a blank

form for the logarithmic solution on the basis of these

formulas
; (4) to fill in the blank form and thus to complete

the solution.

We give a sample of a blank form under Case I ; the student

should prepare his own forms for the other cases.
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165. Case I. Given two Angles and one Side.

Example. Given : a=430.17, ^=47° 13'.2, B=d2° 29'.6. (Fig. 134)

To find: C, 6, c.

Formulas

:

6 =

180°-

a

sin J.

a

-(A+B),

sin B,

sin C.

Check

:

Fia. 134

sin^

c-b ^ ts,ni(C-B)

c + b tSinl{C-\-B)'

The following is a convenient blank form for the logarithmic solu-

tion. The sign ( + ) indicates that the numbers should be added; the

sign (— ) indicates that the number should be subtracted from the one just

above it. ^ , ,

Logarithms
A-

Numbers

( +)^ =
A + B =

C =
179° 60'

d —

sin^ = sin • .

a/sin A
sin B =

b =
sin • • •) (+)

)

a /sin A
sin C = sin

c =.. .

c-b =
c+ b =

(->) ( + )

Check

C-B=
C + B = . ....

tan^C- J5) =tan . . . (-

tan^(C-|-5)=tan . . . (-

(1)

(Logs (1) and (2)

. should be equal

.) (— ) for check.)

(2)
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FilUng in this blank form, we obtain the solution as follows.

Numbers Logarithms

A = 47° 13'.2

B= 52° 29\6

A-\-B= 99°42'.8

179° 60'.0

C = 80° 17'.2

a = 430.17 (->) 2.63364

sin ^ = sin 47° 13' -2 (—>) (-) 9.86567-10

a/sin ^ 2.76797

sin B = sin 52° 29'.6 (->) ( + ) 9.89943 - 10

b = 464.94 Ans. (<-) 2.66740

a/sin yl 2.76797

sin C = sin80° 17'.2 (->) ( + ) 9.99373

c = 577.70 Ans. (^^) 2.76170

c-6= 112.76

c + 6 = 1042.64

(->) 2.05215

(->) (-) 3.01818

9.03402 - 10

C-B= 27°47'.6

C + 5 = 132° 46'.8

tan ^ ( a - jB) = tan 13° 53'.8 (->) 9.39342 - 1

tan 1(0+ -B)= tan 66° 23'. 4 (—^) (_) 0.35942

9.03400 - 10 J

Check

EXERCISES

Solve and check the following triangles ABC :

1. rt = 372.5, .4 = 25°30', J5 = 47°60'.

2. c = 327.85, vl = 110° 52'.9, B = 40° 31'.7. Ans. C = 28° 35'.4

a = 640.11, b =446.20.
3. a = 53.276, A = 108° 50'.0, C = 57° 13'.2.

4. 6 = 22.766, ^=141°59'.l, a=25°12'.4.

5. 6 = 1000.0, B = 30° 30'. 5, C = 50° 50'.8.

6. a = 257.7, A = 47° 25', B = 32° 26'.
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166. Case II. Given two Sides and an Angle opposite

one of them.

If A, a, b are given, B may be determined from the relation

h sin A
(1) sin B

If log sin B = 0, the triangle is a right triangle. Why ?

If log sin B >0, the triangle is impossible. Why ?

If log sin B <0, there are two possible values Bi, B^ of B,

which are supplementary.

Hence there may be two solutions of the triangle. (See Ex. 1,

page 249.)

No confusion need arise from the various possibilities if the

corresponding figure is constructed and kept in mind.

It is desirable to go through the computation for log sin B
before making out the rest of the blank form, unless the data

obviously show what the conditions of the problem actually

are.

Example 1. Given : A = 46° 22'.2, a = 1.4063, 5=2.1048. (Fig. 135)

To find: S, O, c.

Formula : sin B b sin A
a

Fig. 135

Numbers

& = 2.1048 (-

sin ^ = sin 46° 22'.2 (-

bsinA
a = 1.4063 (-

sin B {<

Logarithms

0.32321

) (+ ) 9.85962 ~ 10

0.18283

(-) 0.14808

.) 0.03475

Hence the triangle is impossible. Why ?
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Example 2. Given : a = 73.221, b = 101.53, A .

To find: J5, C, c.

40° 22'.3. (Fig. 136)

Formula: sin 5 = 6sin^

Numbers

b = 101.63
(

sin^=sin40°22'.3 (

b sin A
a = 73.221

sin JB

G

Logarithms

2.00660

-) ( + ) 9.81140 -10
11.81800 - 10

1.86464(-^) (-)
9.95336 - 10

The triangle is therefore possible and

has two solutions (as the figure shows).

We then proceed with the solution as

follows

:

We find one value Bi of B from

the value of log sin B. The other

L JJ lO llUCJU j

Other formulas

:

(7=180°-(^ + B). .

asin C
sin^

Check: ^-^:
c + &

tanUC-B)
tanKO + 5)

Numbers Logarithms

sin B 9.95336 - 10

Bi= 63°65'.2

179*^ 60'.0

^2 = 116° 4'.8

-4 + 5i = 104° 17'.6

179° 60'.0

Ci= 76'^42'.6

a (-» 1.86464

a'mA (-» (--) 9.81140-

a/sin A . 2.06324

sinCir=8in76°42.'6'(->) ( + ) 9.98634-]

Cl

10

10

109.64 (-^) 2.03968
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Ci - 6 = 8.01 (.

Ci + 6 = 211.07 (.

Ci-^i= 11°47'.8

Ci + ^i = 139°37'.7

tan K Ci - Bi) = tan 6° 63'.6

tan K Ci + Bi) = tan 69=^ 48'.8

0.90363

.) (-) 2.82443

8.57920-10

9.01377 - 10

0.43455

8.57922 - 10

Check*

One solution of the triangle gives, therefore, B=63° 55'.2, C = 76° 42'.5,

c = 109.54.

To obtain the second solution, we begin with B2 = 116° 4'. 8. We find

C2 from C2 = 180° -(A + B^) ; i.e. C% = 2-3° 32'. 9. The rest of the com-

putation is similar to that above and is left as an exercise.

EXERCISES

1. Show that, given A, o, 6, if A is obtuse, or if A is acute and a > 6,

there cannot be more than one solution.

Solve the following triangles and check the solutions

:

2. a = 32.479, 6 = 40.176, ^ = 37° 25M.

3. 6 = 4168.2, c = 3179.8, B = 51° 21'.4.

4. a = 2.4621, b = 4.1347, B = 101° 37'.3.

5. a = 421.6, c = 532.7, ^ = 49° 21'.8.

6. a = 461.5, c= 121.2, C = 22° 31'.6.

7. Find the areas of the triangles in Exs. 2-6.

167. Case III. Given two Sides and the Included Angle.

Example. Given: a=214.17, 6=356.21,

C=62°21'.4. (Fig. 137)

To find : A, B, c.

Formulas :

6
tan I {B- A) tan KB + A);

b + a

B+A= 180° - C = 117° 38'.6
;

_ gsin C_ 6 sin C
sin A sin B

* A small discrepancy in the last figure need npt cause concern. Why?
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Numbers

6 - a = 142.04 (

6 + a = 570.38
(

(b - a)/{h + a)

tan ^{B + A) = tan 58° 49' .3 (

tan \{B- A) = tan 22° 22^2 (

.•.A= 36°27M
5= 81°11'.5

-)

-)

Ans.

Ans.

a = 214.17 (->)
sin ^ = sin 36° 27'. 1 (->)

a/sin ^
sin C = sin 62° 21 '.4 (->)

c = 319.32 Ans. (^
Check by finding log (6/sin B).

Logarithms

2.16241

(-) 2.75616

9.39625 - 10

(+ ) 0.21817

9.61442-10

2.33076

(-) 9.77389 -10
2.55687

( + ) 9.94736 -10
2.50423

EXERCISES

Solve and check each of the following triangles.

1. a = 74.801, h = 37.502, C = 63° 35'.5.

2. a = 423.84, 6 = 350.11, C = 43°14'.7.

3. 6 = 275, c = 315, ^ = 30° 30'.

4. « = 150.17, c = 251.09, ^ = 40°40'.2.

6. a = 0.25089, b = 0.30007, C = 42° 30' 20".

6. Find the areas of the triangles in Exs. 1-5.

168. Case IV. Given the three

Sides.

Example. Given : a = 261.62,

b = 322.42,

c = 291.48.

To find : A, B, G.

Formulas :

s = l{a -\-
b

-\- c).

y-J(«— q)(g-ft)(g-c)

tan ^A=—^ , tan I 5 = **

a s — b

Check: A -\- B -\- C = 180°.

tan I C =

b=3gg.4g A
Fig. 138

8 — C
(§ 143)
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Numbers

a = 261.62

6 = 322.42

c = 291.48

( + )

(-)

Logarithms

2s = 875.52

s = 437.76

s-a= 176.14 (->)

s-b= 115.34 (-^)
s-c = 146.28 (-^)

2.24586

2.06i98

2.16518

2s = 875.52 (Check.)

8 = 437.76 (->)
6.47302

2.64124

r

s— a

3.83178

1.91589

2.24586

tan ^ ^ = tan 25° 4'.1 (<-) 9.67003 - 10

r

s-b
1.91589

2.06198

tan 1 5 = tan 35° 32'.4 (<—

)

r =
s— c =

9.85391-10

1.91589

2.16518

tan ^ C = tan 29° 23'.4+ (<-)
A = 50° 8'. 2 ^ws.

B= 71° 4'.8 ^ns.

0= 68° 46'. 9 Ans.

9.75071-10

179° 59'. 9 Check.

EXERCISES

Solve and check each of the following triangles :

1. a = 2.4169, b = 3.2417, c = 4.6293.

2. a = 21.637, & = 10.429, c = 14.221.

3. a = 528.62, b = 499.82, c = 321.77.

4. a = 2179.1, & = 3467.0, c = 5061.8.

5. a = 0.1214, 6=0.0961, c = 0.1573.

6. Find the areas of the triangles in Exs. 1-5.

7. Find the areas of the inscribed circles of the triangles in Ex. 1-6.
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III. THE LOGARITHMIC SCALE—THE SLIDE RULE

169. The Logarithmic Scale. Let us lay off, on a straight

line, segments issuing from the same origin and proportional

to the logarithms of the numbers 1, 2, 3, 4, —. The base of

the system of logarithms is immaterial. Let us label the end-

points of these segments by the corresponding numbers. This

gives a non-uniform scale, which is called a logarithmic scale.

Such a scale is pictured in Fig. 139.

[ T s 4

Fig. 139

rm
A scale of this kind is easily constructed from the graph of

the logarithmic function (Eig. 133).

170. The Slide Rule. The slide rule is an instrument often

used by engineers and others who do much computing.* It

consists of a rule (usually made of wood faced with celluloid)

Fig. 140

along the center of which a slip of the same material slides

in a groove. This slip is called the slide. The face of the

slide is level with the face of the rule.

* Engineers usually purchase rather expensive slide rules made of wood
and celluloid. These are on sale in all stores which carry draftsmen's supplies.

A very simple slide rule sufficiently accurate for class purposes is printed on

hard pasteboard and is obtainable at reasonably small cost through any one

of several manufacturers of instruments. Figure 140 is reproduced on a larger

scale on the first fly-leaf at the back of the book. By cutting out this leaf

and carefully cutting up the figure, a slide rule can be made by the student.

This will not be very accurate, but it will suffice to illustrate the principles.
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Along the upper edge of the groove are engraved two loga-

rithmic scales, usually labeled A and B, the scale A being on

the rule, the scale B on the slide. (See Fig. 141.)

The scales A and B are identical. The slide is simply a

mechanical device for adding graphically the. segments on

r
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Fig. 141

these scales. Since the segments represent the logarithms of

the numbers found on the scale, the operation of adding the

segments is equivalent to multiplying the corresponding num-

bers. Thus, to find the product 2.5 x 3.2 move the slide to the

right until the point marked 1 at the extreme left of the

slide (scale B) is in contact with the point 2.5 on scale A
(Fig. 141 shows the positions of scales A and B after this

operation). The point 3.2 on scale B is then opposite the point

8.0 on scale A. The latter number is the required product

:

2.5 X 3.2 = 8.0. A little reflection should make quite clear

how the operation just performed is equivalent to adding the

logarithms of 2.5 and 3.2 and then reading from the scale the

number corresponding to the sum. We may note further that

with slide set as in the example just worked it is set for

multiplying any number by 2.5 ; i.e. every number of the scale

A is the product of 2.5 by the number below it on scale B.

The slide is therefore also set for division by 2.5. Every
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number of scale B is the result of dividing the number above

it by 2.5. Thus we read from the scale (set as before) that

7.2 -^ 2.5 = 2.9 approximately.

Having now shown very briefly how the slide rule may be

used for multiplication and division, let us examine it a little

more closely. Scales A and B are labeled with the numbers

1,2, 3, 4, 5, 6, 7, 8, 9, 1,2, ...,9,1.

It is natural to ask why the number following the 9 in the

middle of these scales is not labeled 10 ? The answer is that

the numbers on the slide rule are given without any reference

to the position of the decimal point, just as the numbers in a

table of logarithms are given without reference to the decimal

point. The number 1 at the extreme left of the scale may

represent either 1, or 10, or 100, or 1000, etc., or .1, or .01, or

.001, etc. If the 1 at the extreme left of the scale represents

1, then the other numbers on the first half of the scale repre-

sent 2, 3, ..., 9, the 1 in the middle represents 10, the 2 represents

20, and the successive numbers represent 30, 40, -., 100 (the

last being represented by the 1 at the extreme right of the

scale). If on the other hand the 1 at the left represents 100,

the successive numbers represent 200, 300, ..., 900, 1000, 2000,

..., 10,000. If the 1 at the left represents .1, the successive

numbers represent .2, .3, .••, .9, 1.0, 2.0, ••., 10.0 ; and so on.

The reading of the subdivisions on the scales (A and B)

should now offer little difficulty. Whenever an interval be-

tween two successive numbers is divided by certain lines of the

same length into 10 parts, each of these parts represents one

tenth of the number represented by the interval in question.

Thus, if we fix our attention on the division between 2 and 3,

we note that a certain set of lines divides this interval into 10

parts ; if the 2 represent 2, these divisions represent respec-

tively 2.1,2.2, ..., 2.9. On the other hand, if the 2 is thought
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of as representing 20, these divisions represent 21, 22, —, 29

:

and so on. These divisions into ten are at some parts of the

scale subdivided further into five or two parts. These parts

then represent fifths or halves of the interval that represented

a tenth. Thus we may readily locate on the scale the point

representing 1.42 or the point representing 3.65.

Turning our attention to scales C and D along the lower

edge of the groove on the slide and the rule respectively,

we note first that these two scales are also identical. Compar-

ing them with scales A and B, we see that the unit chosen for

C and D is just twice the unit of A and B. Hence the scales

C and D can be used for multiplying and dividing just as

scales A and B are used ; however on C and D our range is

smaller. The range of numbers on A and B is from 1 to 100

;

on C and D only from 1 to 10. To make up for this limitation,

scales C and D give greater accuracy.

However, the principal reason for the existence of the second

pair of scales is the fact that the two pairs of scales thus ob-

tained furnish a table of squares and square roots. In view of

the relation between the units with respect to which the two

pairs of scales are constructed, every number of scale A is the

square of the number vertically below it on scale D. Why ?

In order that corresponding numbers on scales A and D may be

accurately read off, every slide rule is provided with a runner,

the vertical line on which connects corresponding numbers of

the upper and lower scales. The runner also enables us to

perform calculations consisting of several operations without

reading off the intermediate results, thus saving time and

securing greater accuracy in the final result. The actual use

of the slide rule will be explained in the next article.

The successful use of the slide rule depends largely on the

ability to read the scales readily and accurately, accuracy
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often necessitating the estimating of numbers falling between

the lines of division. The ability mentioned can be secured

only by practice. A proficient operator, with a ten-inch slide

rule, can always secure results accurate to three significant

figures. This degree of accuracy is sufScient for many of the

computations of applied science, manufacturing, etc., in which

the slide rule is proving more and more useful.

171. The Use of the Slide Rule. All calculations in mul-

tiplication, division, proportion, etc., are worked on scales Cand
D unless the answer is so large that it does not lie on the scale.

In that case scales A and B are used. Let us begin with pro-

portion. On this topic, and on the corresponding property of

the slide rule, all computations involving multiplication or

division, or both, maybe made to depend in a very simple way.

The property of the slide rule referred to is as follows : No
matter where the slide be placed, all the numbers on the slide

bear the same ratio to the corresjjonding numbers on the rule (due

regard being had to the position of the decimal point). For

example, if the slide be set so that 2 of O coincides with 4 of

D, it will be observed that the same ratio 2 : 4 exists between

every pair of corresponding numbers : 1 : 2, 3 : 6, 42 : 84,

125 : 250, etc. Explain why this is true. This leads at once to

the rule for finding the fourth term of a proportion, when the

first three are given. We give this rule in diagrammatic form,

as follows :
*

To find the fourth term of a proportion

:

c
D

Set first term

over second term.

Under third term

find fourth term.

Iji this article we have followed to a considerable extent the treatment

given in the Manual for the use of the Mannheim Slide Rule, published by

the Keuffel and Esser Co., New York.
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This gives the solution of the equation

b X

Tofind the product abj solve the proportion

a X

To find the quotient -, solve the proportion

a__x

The following examples will make clear the procedure.

Example 1. Solve the proportion : 13/24 = 32/a;.

257

D
Set 13

over 24

Under 32

find 69.1 Ans.

Example 2. Solve the proportion : 13/24 = 75/x.

Since the first two terms of the proportion are the same as in the pre-

ceding example, we set the slide as before. We now find, however, that

75 on C is beyond the extremity of D. We accordingly set the runner on

the left-hand 1 of 0, and then set the right-hand 1 of C on the runner.

We find under 75 the number 138.5, the required value of x* (Justify

the above use of the runner.

)

The same example can be done on scales A and B with one setting,

without using the runner.

Example 3. Find the product: 23.2 x 5.3.

c
D

Setl

over 23.2

Under 5.3

find 123.0 Ans.

Here we set the right-hand 1 on 23.2. Use whichever 1 serves. The
decimal point, in this as in the other examples, is simply located by in-

spection and a brief mental estimate of the answer. Here we see readily

that the answer is something over 100; hence we locate the decimal

point at the place to give us 123.0.

* The .5 in this answer must be estimated. Usually, if more than three

significant figures are obtained from the rule, the last is uncertain.
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Example 4. Find the value o/364 -4- 115.

c
D

Set 364

over 115

Find 3.17, Ans.

over 1

Example 5. Find the circumference of a circle whose diameter is 42

ft. We multiply the diameter by tt = 3.14.* Hence,

c
D

Set 1

over 3.14

Under 42

find 132.0 Ans.

By ordinary multiplication we get 131.88 ; an example of the inaccur-

acy of the fourth significant figure.

Example 6. Find the continued product : 1.6 x 4.2 x 5.3 x 2,8.

The abbreviation R. denotes the runner on the slide-rule.

Set 1

over 1.6

R, to 4.2 1 to R. R. to 5.3 1 toR. Under 2.8

find 99.7 Ans.

We add a fevnr more rules for computing various types of expressions

involving scales A and B as vv^ell as C and D.

(1) To find a^ xb:

(2) To,

A Find a2&. Ans.

B over b.

C Setl

D over a

ada'^-h b:

A Find a2 h- b, Ans

B Set 6 over 1.

C
D over a

* The number t is usually raa>'ked on the scale.
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(3) To find geometric mean between two numbers a and b; i.e. lincl x,

so that a/x = x/b. Let a< 6.

A
B Seta Below 6

C
D over a findiX=G.M:

(4) To reduce fractions to decimals

Set numerator

over denominator

Find equivalent decimal

above 1

These rules are not to be memorized. They will be used almost in-

stinctively by one who has made the reason for each rule thoroughly clear

to himself and who is in practice.

EXERCISES

1. With a slide rule compute the value of :

(a) 2.13 X 4.42. {h) 2,856,000 x 256,700,000.

(&) 1.98x5.24.,
___ 5,43^31.5

(c) 2.77 x 3.14 X 4.25.

id) 8.27/2.63.

(e) 5.48/3.26.

(/) 10/3.14.

{g) 0.000116 X 0.0392.

(0

U)

21.4

7.64 X 4.14

21.2

67.4 X 25.5 X 19.7

4.64 X 18.4

2. With a slide rule compute the value of

:

(a) (2.85)2. (c) (1.86)3.

(6) 3.72 X (2.23)2. (^) (6.24)2/26.3.

3. Find the circumference and the area of a circle whose radius is

4.16 in.

4. What is the length in feet of 27.3 meters, given that 26 meters

=

82 feet ? Solve with one setting of the slide.
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IV. LOGARITHMIC PAPER

172. Logarithmic Paper. Euled paper is printed, on which

the rulings in both directions are spaced according to the

logarithmic scale (§ 169), i.e. precisely as on a slide rule.*

Such paper is called logarithmic paper. Samples of this ruling

are shown in Figs. 142-143.

173. Plotting Powers on Logarithmic Paper. The graphs

of equations of the type

(1) y = kx""

can be plotted very readily on logarithmic paper. For, if we

take the logarithms of both sides, we find

(2) log 2/ = log A: -h n log x.

Let us set Y=\ogy, K=\ogk, X=loga;;

then (2) becomes

(3) Y=K-\-nX.

Now the equation (3) represents a straight line if X and Y be

taken as the variables. This is precisely what happens if we

plot the values of x and y from equation (1) on logarithmic

paper ; for, when we plot a value for x on logarithmic paper, the

distance from the left border is nothing else than logic, i.e. X;
and similarly for Y.

Moreover, the slope of the straight line represented by (3) is

n, the exponent of x in (1) ; and the intercept on the Y axis is

K= log k. Hence if values of x and y from (1) are plotted on

logarithmic paper, the value of n in (1) appears as the slope of

the straight line graph, and the value of k can be read off

directly on the vertical axis.

* On this account, it is possible to make a crude slide rule by using the

edges of two sheets of logarithmic paper, sliding them along each other after

the manner of a slide rule.
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Example 1. Draw the graph of the equation y = r^ on logarithmic

paper.

Take x— \, then y =\. Take x = 10, then y = 100. Plot these two
points A (1, 1) and B (10, 100) (Fig. 142). Connect A and 5 by a

straight line. This is the required graph.

The graph may be drawn also by noticing that its slope is the exponent
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of X in the given equation, i.e. 2. Hence we may draw from A a line

whose slope is 2. Show that this gives the same line, AB.
We may use this graph to find squares or square roots. Thus, if a; = 4,

we can note the point on the graph directly over 4, and read the_corre-

sponding value of y, which is 16. Reversal of the process gives \/16 = 4.

Likewise, if x = 4.5, we find y - 20.2+ ; and vl5 = 3.8, approximately.
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Conversely, given a straight line on logarithmic paper, we

know that its equation must be of the form (1). We can j&nd

n by actually measuring the slope, and we can read off k on the

vertical line through the point marked (1, 1), since if we place
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a; = 1 in equation (2), we have log?/ = logfc, whence 2/ = A;.

Any other value of x may be used instead of £c = 1, but a; = 1 is

most convenient because log 1 = 0.

Example 2. A strong rubber band stretched under a pull of p kg.

shows an elongation of e cm. The following values were found in an

experiment

:
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p 0.5 i:o 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0

e 0.1 0.3 0.6 0.9 1.3 1.7 2.2 2.7 3.3 3.9 5.3 6.9

If these values are plotted on logarithmic paper, . it is evident

that they lie reasonably near a straight line, such as that drawn in

Fig. 143.

By measurement in the figure, the slope of this line is found to be 1.6,

approximately. Hence if we set

P= logp, ^ = 'loge,

we have ^=^+1.6P,

where iTls a constant not yet determined ; whence

loge = K-{- \.Q\ogp

or . e = kp^-^^

where K = log k. If p = 1, e = A; ; from the figure, if j> = 1, e = 0.3 ;

hence k = 0.3, and
e = 0.3pi-6.

EXERCISES

1. Plot on logarithmic paper the graph of each of the following equa-

tions :

(a) y — 7?. (c) y = afi. (e) y = S x^.

(b) y = xi (d) y = x^-s. (/) y = 4.5 x^-^.

2. Draw the graph ot y = x-^. Note that the negative exponent — 2

gives simply what we ordinarily call a negative slope of — 2 for the

straight line graph.

3. When air expands or is compressed (as in an air compressor) , with-

out appreciable loss or gain of heat, the pressure p and the volume v are

connected by the formula

p = kv~^-^, approximately.

Pressure is often measured in atmospheres, and volume in cubic feet.

If we start with one cubic foot of air at one atmosphere of pressure, it is

obvious that k = 1. Draw the graph for this case, and from it find p
when V = 0.5 cu. ft. Find v when p = 5 atmospheres. Find v when

p = 0.5 atmospheres.
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4. The intercollegiate track records for foot races (1916) are as

follows, where d means the distance run, and t means the record time :

cl 100 yd. 220 yd. 440 yd. 880 yd. Imi. 2 mi.

t 0:09| 0:21^ 0:48 l:54f 4 : lof 9:23f

Plot the logarithms of these values on squared paper (or plot the given

values themselves on logarithmic paper). Find a relation of the form

t = k(P^. What should be the record time for a race of 1320 yd.?

(See Kexnelly, Popular Science Monthly, Nov. 1908.)

5. In each of the following tables, the quantities are the results of

actual experiments ; the two variables are supposed theoretically to be

connected by an equation of the form y = fccC*. Draw a logarithmic graph

and determine k and ?i, approximately :

(a) (Steam pressure ; v = volume, p = pressure.

)

V 2 4 6 8 10

p 68.7 31.3 19.8 14.3 11.3

(Saxelby.)

(6) (Gas engine mixture ; notation as above.)

V 3.54 4.13 4.73 5.35 5.94 6.55 7.14 7.73 8.05

p 141.3 115 95 81.4 71.2 63.6 54.6 50.7 45

(Gibson.)

(c) (Head of water h, and time t of discharge of a given amount.)

h 0.043 0.057 0.077 0.095 0.100

t 1260 540 275 170 138

(Gibson.)



CHAPTER X

THE IMPLICIT QUADRATIC FUNCTIONS

Two-valued Functions

I. THE FORMS Ax^-^ Ey+ C = AND By'^ -{- Dx -{- C =

174. The General Implicit Quadratic Function. We shall

now return to the discussion of algebraic functions. We first

discussed the explicit linear function y=mx-\-b, and the function

y defined by the implicit relation Ax -f- By +0 = (Chapter

III). Then we discussed the explicit quadratic function of

the form y = ax"^ -\-hx -\- c (Chapter IV). We now propose to

take up the discussion of the functions y defined by implicit

quadratic relations, such as 4 !/2 — 5 a? = 0, ic^ — 4 ?/--f 2 a;— 41/—

1

= 0, etc. The most general form of such an equation is

(1) Ax"^ + Fxy + By^ + Dx -}- Ey + C = 0.

The graphs of equations of this form are important curves,

with interesting geometric properties, which we shall discuss

in a later chapter. Our present purpose is to determine the

general nature of these graphs (their shape, etc.) and to develop

methods whereby the graph of a given equation of the type

considered may be readily drawn.

We may note at the outset that the function defined by an

implicit quadratic relation between x and y will usually be

two-valued, i.e. to each value of x will correspond, in general,

two distinct values of y. This is due to the fact that if any

particular value be assigned to x in equation (1) above, the

265
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corresponding values of y are determined by a quadratic equa-

tion, unless ^ = 0.

We shall approach the discussion of equations of type (1) by

considering in order certain simpler forms of this general

type. First, we shall discuss equations of the two types

Ax'+Ey +C = and By'^ ^ Dx -\- C =^ 0.

175. The Equations x'^ — y — and y'^—x—0. We can dis-

pose of the equations x"^ — y = and 3/2 — a; = very quickly.

The first equation is equivalent to the equation y = x^, already

discussed in § 72. The second equation is equivalent to the

equation

(2) y^=x,

or y = ± Va;.

We can either plot the points {x, y) whose coordinates satisfy

this relation and thus obtain the graph desired * ; or, we can

note that the equation y"^ = x is obtained from the equation

352 = ?/ by simply interchanging x and y. Hence, the graph of

y"^ = X is obtained from the graph of y = x^ by turning the

plane of the graph oi y — x"^ over about the line through the

origin bisecting the first and third quadrants. Eor, this opera-

tion will interchange the x- and ?/-axes in the desired way. The

two graphs are shown in Fig. 144.

Certain properties of the graph of the equation y"^ = x are at

once evident from the form of the equation : The graph is

symmetric with respect to the a^axis ; for, if a point (Ji, k)

satisfies the equation, the point {Ji,
— k) also satisfies the

equation. Why ? The graph lies at the right of the aj-axis
;

for, any negative value of x would give rise to imaginary

values, of y. Why?

- * A table of square roots will facilitate the work.
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The most important properties of the double-valued function

± Va; to be noted are the following

:

(1) For every positive value of x there are two values of the

function, viz. -f V^ and — ^x. Therefore the function is two-

valued.

(2) As X increases numerically, the corresponding values of

\Jx increase numerically, i.e. the numerical value of Va; is an

increasing function of x.

176. The Form By'' -f Dx = 0. B^^.
may always write the equation in the form

(3)

Since B^^^ we

B '
Y

^-

n>o

X

y'

i.e. in the form

where n = — D/B. The graph is

then similar to that of x^^ny, the

only difference being that the roles

of the X- and i/-axes are interchanged. If the coefficient n is

positive, the graph is at the right of the 2/-axis ;
if n is nega-

tive, the graph is at the left of the .v-axis (Fig. 145). In both

cases the graph is symmetric with respect to the ic-axis, and

Fig. 145
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passes through the origin, at which point it has a vertical tan-

gent. Why ? The curve defined by an equation of the type

considered is called a parabola if D =^0. (See Chapter IV.)

To sketch such a curve rapidly, knowing its general shape, we

need only plot a few corresponding values of x and y. If i>=0,

the equation becomes By'^=0. Its graph is then the a^axis.

177. The Slope of the Curve By^ + Dx = 0. To determine

the slope of the tangent to the curve

By^-{- I)x= 0,

we may proceed by the method used for similar problems in

Chapters IV and V. To this end we first calculate the change

ratio Ay/Ax, which is the slope of the chord PQ (Fig. 146). The

z^
\^Au

TTo

Fig. 146

slope of the tangent at P is then the limit which this ratio

approaches when Ax approaches the value 0.

Let P(£Ci, 2/i) be any point on the curve, and Q(a;i + Ax, t/i + Ay)

be another such point. Then we have

J5(2/i + AyY + i)(a!i + Ax) = 0,

and

Expanding the first of these equations, and subtracting the

second from it, we get

2 ByAy + BAy'^ + DAx = 0,

or

{2By,-rBAy)^^=-D.
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Hence, the desired change ratio is

Aj/_ D
Aa? 2Byi-\-BAy°

When Ax approaches zero, Ay also approaches zero. Why?
The desired slope of the curve

Bi/ + Dx =

at the point (xi, y-^ is, therefore,

^^ 2By,

The expression for the slope exhibits certain properties of

the curve

:

(1) The curve has a vertical tangent at the origin (2/1 = 0).

(2) The slope of the curve above the it'-axis is positive, if B
and D have opposite signs ; and negative, if B and D have the

same sign.

(3) The slope of the curve decreases indefinitely in absolute

value as the point (a^i, 2/1) recedes indefinitely from the origin.

EXERCISES

1. For each of the following equations, determine the slope at the point

(xi, y\) and sketch the curve represented. For each point plotted deter-

mine the slope of the tangent and draw the tangent.

(a) 2/2-4x^:0; (6) ?/2 + 2a; = 0; (c)4x2-3y = 0;

((?) 4 2/2 + 9x^0; (e) y^ = Qx.

2. Derive the equation of the tangent to each of the curves in Ex. 1 at

the point indicated :

(a)(l,2); (6)(_2,-2); (c)(-3,12); (d) (-4, - 3) ;
(e)(6,6)'.

3. Show that the equation of the tangent to the curve y2 = 2 px at the

point (xi, yi) on the curve is y\y =p (x + xx).

4. Draw the curves y'^ = nx for several different values of n on the

same sheet of paper. It is suggested that the values w = l,2, 5, — 1, — 2,

be included.
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II. THE FORM Ax"^ + By^ + C=

178. The Case A=^B. The Equation x"" -^ y^ = a\ It so

happens that, if the units on the x- and ?/-axes are equal, we can

interpret the left-hand member of this equation geometrically.

For, it is evident from the figure (Fig. 147) that, under the

Fig. 147

hypothesis of equal units, x^ -\- y^ is the square of the distance

of the point (x, y) from the origin. Hence the equation

(5) a;2^2/' = «^

states that the point {x, y) is distant a units from the origin.

It follows that the points {x, y) satisfying this equation are all

on the circle described about as center with the radius a, and

conversely the coordinates of every point on this circle will

satisfy the equation. The graph of the equation x^ -\-y'^= a^ is

then a circle, if the units on the two axes are equal.

If the units on the axes are unequal, the ordinates of the

above circle must be shortened or lengthened in a certain ratio,

according as the unit on the ^/-axis is less than or greater than

the unit on the a^axis. In either case the graph of the equa-

tion will be a closed curve.

Throughout the remainder of this chapter, however, we shall

assume, in order to fix ideas, that the units on the axes are equal.

If A = B {AB ^ 0), the equation

(6) A^-^Bf-^-Q^^
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may be written in the form x^ -\- y^ = — — »

The graph of this equation is a circle, if — C/A is positive. If

— C/A is negative, the equation has no graph, i.e. no pair of

real values of x and y can satisfy it. If C — 0, tHe only point

satisfying the equation is the origin.*

179. The Case A >0, B >0. Consider first the special

case x"^ + 4t y- = 9. If we solve this equation for ?/, we have

(7) y = ±^^9-x\

Now, we know from § 178 that the graph of the function

(8) 2/ = ±V9^=^
is a circle with center at the origin and radius equal to 3.

Y

^-^ '~~-^

^ \

>^ "^i
' -~ O-liji X

y> VV
T "^^ ^^ Z

. ,

X .^^^ ^--^

Fig. 148

The ordinates of the points of (7) are then equal to one half

the corresponding ordinates of the points on the circle (8). The

construction of the graph of (7) should then be clear from the

figure (Fig. 148). The graph in question is a closed curve,

having a greatest length of 6 units and a greatest width of 3

units. It is symmetric with respect to both axes.

* The last locus may be considered as a circle with radius equal to 0; it is

sometimes called a poini circle.
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(9)

The general form

Ax^-^ By^-j-C=0

can be treated similarly, if A and B are both positive,

equation may be written in the form

C
A

The

(10) x^ + ?f =

This shows that there is no graph if the right-hand member is

negative. If the right-hand member is 0, the point (0, 0) is the

only point satisfying the equation. There remains only the

case where — C/A is positive.

Equation (10) gives _
(11) ,=±^|.^_|_.,
Now, the equation

(12) y

represents a circle. Equation (11) tells us that the desired

graph is obtained by shortening or lengthening the ordinates

of this circle in the ratio ^A/B to 1.

I >^fTTNL
I I I I I I

Example. If we solve the equation 9x^

7^^1l^^tIIII -\-4y^ = S6 for?/, we obtain y = ± |V4 — x^;

/[ I mI I I r\ I I I I this tells us that the graph of the given

equation is obtained from that of the circle

y = ± V4 — x'^ by lengthening the ordinates

of the latter to three halves their original

length. Figure 149 exhibits the result.mm
The graph of an equation of the form

Fig. 149 Ax^-\-By^-}-C=0 under the hypothesis

that A and B are both positive and that C is negative, is then

a closed curve symmetric with respect to both axes.

The curve represented by an equation of the form (9) above

is called an ellipse. An ellipse is symmetric with respect to
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each of two perpendicular lines, called the axes of the ellipse.

The intersection of the axes of an ellipse is called the center

of the ellipse. Knowing the general shape of the curve, the

quickest way to sketch it from the equation is to find the

intercepts on the axes and draw a symmetric curve through

the four points thus obtained. In the example 9 x^ -\- 4: y"^ == 36

already considered, we find the intercepts to be ic = ± 2 (found

by placing 2/ = 0) and y = ±o (when x = 0). If we mark the

four corresponding points, the curve can be sketched readil}.

EXERCISES

1. Discuss the locus of each of the following equations and, if the

equation has a locus, sketch it and show how it is related to a certain

circle (if the locus is not itself a circle) :

(a) x^ -\- y^ = 16. (d) ix^-\-y^-\-16 = 0. (g) ix^ -\- Sy^ = 12.

(c) 4 0:2 4-2/2-16=0. (/) 2x^-{-2y2 = 5. ^ ^ 4
"^

9

2. For what values of x in each of the equations in Ex. 1 doesy become

imaginary ? For what values of y does x become imaginary ?

3. Show directly from the equations that each of the graphs in Ex. 1,

if it exists, is symmetric with respect to both the x-axis and the y-axis.

4. According to the definition above, is a circle an ellipse ?

180. The Slope of the Curve represented by Ax^ + By^

-\- C = 0, Here again we calculate the change ratio Ay/Ax,

which is the slope of the secant joining the points P(xi, y^) and

Q{xi + Aa;, y^ + Ay) on the curve, and then find the limit which

this ratio approaches when Q approaches P along the curve, i.e.

when Ax and, consequently. Ay approach 0. The calculation is

as follows

:

Since P and Q both lie on the curve

, Ax' + By^+C^O,
we have

(13) Ax^^-{-By,^+C=0,
T
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and

(14) A{x, + Axy + B(y, + Ayf +C=0.

Expanding the squares in the last equation and subtracting

(13) from (14), we have

2 Ax^Ax + AAx"^ + 2 By^Ay + BAy^ = 0,

or (2 By^ + BAy) Ay = — {2 Ax^ + AAx) Ax,

whence we obtain the slope of the line PQ,

Ay _ _ 2 Axi -f AAx
Ax~ 2 ByI + BAy

{B=^0).

When Ax and Ay both approach 0, we get for the slope of the

curve at the point (xi, y^)

(15) m =-^.
«

An interesting verification of this result may be noticed. It is well

known that the tangent to a circle at a point P is perpendicular to the

radius OP. Now consider a circle with center at the origin. The slope of

the radius through (xi, yi) is then clearly yi/xi. The slope of the tan-

gent should, therefore, be —Xi/yi. But this is exactly what the preceding

formula for the slope gives, when the equation represents a circle, i.e.

when A = B.

EXERCISES

1. Show from the result of the last article that at the points where the

curve Ax^ + By^ +(7=0 {ABC =^ 0) crosses the ?/-axis its tangents are

horizontal ; and that at the points where it crosses the a;-axis its tangents

are vertical.

2. Find the equation of the tangent to each of the following curves at

the point indicated. Check the result by sketching the curve carefully

and drawing the tangent from its equation,

(a) 4 a:2 4- y2 = 25 at (2, 3). (6) x^ + iy^ = S&t (2, 1).

(c) 3 x2 + 4 1/2 ::^ 16 at (2, -1).
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181. The Case i4 > 0, 5 < 0. We may always write the

equation (9) so that A is positive. The case where A and B
have unlike signs leads to a new type of graph.

The Graph of x^ — ]p- = 9. In seeking the graph of this

equation, we observe first the following facts

:

(1) The graph crosses the a;-axis at the points (3, 0) and

(—3, 0), and does not cross the y-axis. Why ?

(2) The curve is symmetric with respect to both axes. For,

if the point (/i, li) is on the curve, so also is the point (A, — H).

Hence, the curve is symmetric with respect to the a>axis.

Similarly, if the point (/i, fc is on the curve, so also is the

point (— /i, Iz). Hence the curve is symmetric with respect

to the 2/-axis.

(3) Solving the equation for y gives us

(16) 2/ = ± Va;2 _ 9,

This incidentally again establishes the symmetry of the curve

with respect to the x-axis. But it shows further that, if a'2<9,

y is imaginary. Hence, no part of the curve lies in the strip

of the plane between the lines x — Z and a; = — 3. In other

words all values of x between 3 and — 3 are excluded. Solv-

ing the equation for x gives

a; = ± V2/' + 9.

This shows that no values of y are excluded, since 2/^ + 9 is

positive for every real value of y.

(4) The slope of the curve at the point (a^i, y-^ is by § 180,

m =—

•

2/1

This shows that the curve crosses the a;-axis vertically, i.e. the

lines a; = 3 and aj = — 3 are tangent to the curve at (3, 0) and

(— 3, 0) respectively.

With these results in mind we now calculate the coordinates

of a few points on the curve and the slope of the curve at these
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points. We thus get the following table :

[X, § 181

X 3 4 5 6

y V7 4 3V3

m QO fvy f fV3

We plot these points and those symmetrically situated with

respect to the two axes and get Fig. 150. We know from

equation (16) that y increases numerically from as a; increases

: :: :::::;: : : x:::-f- --

x '

^ ~
G J2

A-:^ _ ^ TLt- :
"s \ r, Ay
"sZs ~ " ^ y "

_s^s_ __; ^ _ _ <L I
% \ z ^ I i :

S ^ 5 /La\ ^ ^ ^ '5^1, it
L S ^ Z J
\ ^ 1 ^ i
A si / t

_ j: sc dt
1 ^ V i. aL 6 'C
i zj's Jl
t ^ ^5
y -/ - S^ ^L
t ^ S 5

J /' S s
- ^- z : :s^^.

.-^t.^ s ^^
2 2 - - ^s S:

"""

t -,Z_ \i s
z:? _ _ s s
^/ - - ^^
z_ - . ^

i

Fig. 150

numerically from 3. We have already seen that the curve

consists of two branches. It remains only to consider what the

character of the curve is for numerically large values of x.

Equation (16) tells us that y increases numerically without

limit, as x increases indefinitely in absolute value ; i.e. the curve

recedes indefinitely from both axes. It recedes, however, in a

very definite way. For, consider the slope m of the curve at

any point (aji, 2/1). From § 180 we have, for A = l, J5 = — 1,
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m=^= ^
Vi ± Va^i^ - 9

the upper sign being used if yi is positive ; the lower, if y^ is

negative. To fix ideas, let (x^, yi) be a point in the first quad-

rant and let it move out along the curve indefinitely. We de-

sire to see what happens to the slope of the curve under this

condition ; i.e. when Xi becomes indefinitely large. To this end

we write m in a more convenient form, as follows

:

2/ -2/] =-{^-^i)y

which shows that as Xi increases indefinitely, m approaches

more and more nearly the value -|- 1. This shows that the

further the point {x^, y^) travels out along the curve in the first

quadrant, the more nearly does the direction of its motion

make an angle of 45° with the ic-axis.

Consider now the equation of the tangent to the curve at

the point {xi, ?/i)

:

2/-2/] =
2/1

or,

^1^ - 2/i2/ = ^i^ - Vi^

or.

This may be written

xi 9
y =— ' X

2/1 2/1

As Xi and yi become indefinitely large, the slope Xi/yi, as we

have seen, approaches the value + 1, while the term 9/2/i evi-

dently approaches the value 0. Therefore, the tangent to the
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curve at the point {xi, 2/1) approaches the line

y=:x.

A line, which is the limiting position which the tangent to a

curve approaches, as the point of contact recedes indefinitely

along an infinite branch of the curve, is called an asymptote of

(lie curve.

If the point (x^, y^ recedes indefinitely along the curve in

the third quadrant {x^ < 0, 2/1 < 0), the slope is positive and the

tangent approaches the same limiting position as before,

namely, y = x. Similar considerations (or the symmetry of the

curve) show that the line

y = -x]

is also an asymptote. The two asymptotes are also shown in

the figure as they are a great help in drawing the curve.

The Graph of x"^ — y"^ If, in place of the 9 in the

equation x"^ — y'^=^ just considered, we have any other positive

number, say a^, the discussion is very similar and accordingly we
can be brief. The curve of the equation x'^—y'^ = a^ crosses the pr-

axis at the points (a, 0) and (—a, 0),

and does not cross the 2/-axis. It

is symmetric with respect to both

axes. We have y = ± -y/x^ — a^

and m = Xi/y^. We find also

1m= ±

Fig. 151 4
from which we conclude that the curve approaches indefinitely

near the straight lines y—x and y=—x. The curve is, then, as

drawn in Fig. 151.
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The General Case, when C is Negative. Any equation

of the form

where A is positive and B and C are both negative, may now
be treated without much difficulty. Any such equation can be

written in the form

(17) x^ - ny = a\

From this we obtain

n
a\

Fig. 152

But this shows at once, by com-

parison with the last equation

considered, that the ordinates of

points on the curve x^—n^if-^d?-

are to the corresponding ordinates of the curve ^ — 'ip- =. o? as

X/n is to 1. In Fig. 152 we have drawn both the curve

a;2 — 2/2 == d?- and the curve x"^ — ^y"^ = a^, the ordinates of the

latter being just one half of the corresponding ordinates of the

former. The asymptotes of the latter are the lines y^^x and

y = -^x.
Since the asymptotes are a great help in sketching the curve,

we should have a means of obtaining their equations quickly

from the equation of the curve. From the result of § 180

(A=l, B=— n^) and considerations similar to those used in

the discussion of x'^—y^=9, we find the equations m. the

asymptotes to be

y =- X and y = x,

n n

OT X— ny = and x-\-ny = 0. But these equations are found

by placing equal to zero each of the factors of the left-hand

member of the equation of the curve x^ — n^y^ = a^.
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An example will show how these various results may be applied in

sketching a curve whose equation is of the form considered. To sketch

the graph of 4iX^ — 9y'- = 36, we draw

first tlie asymptotes 2x—3y=0 and

2 X + 3 y = (Fig. 153). We next

place y = 0,in the given equation and

find the a;-intercepts to be x = 3 and

£c = — 3. We can now sketch the

curve with considerable accuracy, since

we know what its general charac-

teristics are.

""•Jnxrr t ;lL^'
"

: -hi: :: ± :; : _;<?-- :S S T , 4^ , -

4- ^ ^s -( ^^ / -

:_:--:±:j:___± i^.-zzt'.:.'- ::i::::±:±::i^?.-±{3. .±
J /:^5-_^ \

::::::±^i^::.::::-::!s-U:±:i::
---^5"^-:-::::-::::::^^--^

/''^(^ _ - - ^s*>. lX4Ur<Tl T>T*sj I

Fig. 153

The graph of any equation of the form

^2 _ „2^2 3= ^2 {^n ^ 0, a ^ 0)

is a curve called a hyperbola. We have seen that it consists

of two branches ; it is symmetric with respect to each of

two lines, which are called the axes of the curve. One' of

these cuts the curve in two points and is called the trans-

verse axis
; the other axis does not meet the curve at all. The

intersection of the axes of the curve is called the center of the

curve. The branches of the curve extend indefinitely and

approach two straight lines, the asymptotes of the curve,

which pass through the center.

We may now complete the discussion of the graph of any

equation of the form Ax^ -\- By^ -\- C = 0, under the hypothesis

that A is positive and B negative. We have already disposed

of the case < 0, by considering the form x^ — 7iy — a,\ The

case C > leads similarly to the form x^—n^y'^=—a^. By
interchanging x and y this reduces to the form n^x"^ — y^ = a^

which on division by n^ reduces to the case O < already con-

sidered. The graph of an equation Ax"^ -\- By"^ -\- C=0, when

A is positive, B negative, and G positive, is therefore a hyper-

bola with the center at the origin and with its transverse axis

coinciding with the 2/-axis.
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Fig. 155

The following example will illustrate the method of sketching the

curve : Sketch the graph of ic^— 4 ?/2+ 4= 0. The asymptotes are x — 2 y =
and X + 2 1/ = (Fig. 154). Placing x = 0,

we find the ^/-intercepts to be +1 and — 1.

Having marked the corresponding points and

drawn the asymptotes the graph is readily

drawn.

Finally, when 0=0, the equation

may be written in the form x^—7i'^y^=0.

Thismaybewritten

(x — ny){x + 7}y) = 0. This equation will be

satisfied by all points which satisfy either

x—ny — or ic-f-7?y= 0, and by no others.

The locus of the equation is then two straight

lines passing through the origin. Figure 155

shows the locus of the equation 4 a;^— 9 2/^=0.

182. The Case il = or 5 = 0. If ^= 0, 5 > 0, the equation

Ax^-{-By^-\-C=0 becomes By^ -\- C — 0. If O is positive, there

is no graph. If C is negative, the graph consists of two lines

parallel to the £c-axis. If C is zero, the graph is the x'-axis.

When B—OjA>0, the graph of the equation consists similarly

of two straight lines parallel to the t^-axis, if C is negative ; of

the ?/-axis, if is zero ; and there is no graph, if G is positive.

EXERCISES

1. Sketch the graph of each of the following equations :

(a) x2 - 9 ?/2 = 16. (d) 9 x'^ - 16 ^2 _^ 16 = 0. (g) 3 x2 - 2 y^ = 6.

(&) x2~9i/2=- 16. (e) 9x^- 16?/2- 16 = 0. (/i) 3x2 - 12 = 0.

(c) x2 - 9 2/2 = 0. (/) 9 x2 -'l6 1/ = 0. (0 3x2 + 1 = 0.

2. Give a detailed discussion of the graph of the equation x2— y^ =— 9

(analogous to the discussion of x2 — y2 _ 9 given in the text).

3. Give a detailed discussion of the graph of x^—n^y^=—a^. Prove, in

particular, that the asymptotes of this hyperbola are given by x^—7i'^y^=0.

4. Prove that no tangent to the curve x^ - y^ = a^ has a slope that lies

between + 1 and — 1. Prove, in general, that no tangent to the curve

a;2 _ n22/2 = a2 (a =56 0) has a slope that lies between 1/n and — 1/n.
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III. THE FORM Ax^ -\- By'' + Dx -^ Ey + C =

183. Recapitulation and Extension of Previous Results.

We have seen in the previous sections of this chapter that an

equation of one of the forms

By^ + Da; = 0,

or ^a;2 -1-52/2 4- 0=0
represents either

(a) a parabola, with vertex at the origin and axis coinciding

with the oj-axis or the 2/-axis ; or,

(h) an ellipse, with center at the origin and axes coinciding

with the axes of coordinates ; or

(c) a hyperbola, with center at the origin and transverse axis

coinciding with the a;-axis or the y-axis ; or

(d) two straight lines (which may coincide) ; or

(e) a single point (the point (0, 0)) ; or

(/) no locus.

If we replace xhj x — h and yhjy — k, in any of the above

forms, we know that the graph of the resulting equation is ob-

tained from the graph of the original equation by moving the

latter so that the origin moves to the point {h, k) (the axes re-

maining parallel to their original positions).

We may then conclude that an equation of any one of the

forms

(18) A{x - hy+ E{y - k) - 0, B{y - ky+ D{x -h) = 0,

or A(x - hy -\-B(y-ky-\-C =
represents either

(a) a parabola with vertex at the point {h, k) and axis coin-

ciding with the line x — h = or the line y — k = 0; or

(b) an ellipse with center at the point (h, k) and axes coin-

ciding with the lines x — h = and y — k = 0; or



X, § 183] IMPLICIT QUADRATIC FUNCTIONS 283

(c) a hyperbola with center at the point (/i, k) and transverse

axis coinciding with the line a;— /i=0, or the line ?/— A:=0; or

(fZ) two straight lines (which may coincide), or

(e) a single point (the point (h, k))
;
or

(/) no locus.

Now, any equation of the form

(19) Ax' -\-Btf + Dx + Ey-\-C=0

can be put in one of the forms (18) by completing the squares.

The following examples show how this may be done.

axis'" ^

'^.

Fig. 156

Example 1. Discuss and sketch the graph of y2_2y-f2x + 7 = 0.

This equation may be written in the form

y2_2y=-2x-7,
or

l/2_2y + l=-2x-7 + l,

i.e.

It is accordingly a parabola with vertex at ( - 3, 1 ) and axis y = 1. The

graph is given in Fig. 156.

Example 2. Discuss and sketch the graph

of a;2 + y2 _ 4 a; _ 6 y + 9 = 0.

This equation may be w^ritten in the form

(x2-4x + 4) + (2/2-6?y + 9) =-9 + 4 + 9,

or

(a;-2)2 + (?/-3)2 = 4.

Therefore the given equation represents a

circle with center at (2, 3) and radius equal

to 2. (See Fig. 157.) •

Fig. 167

1, C _ 7

, i''----''^:-

Hi" ? ^ ? 1
^
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Example 3. Discuss and sketch the graph of 9x^ + IQy'^ — ISx

+ 64 2/
- 8 = 0.

This equation may be written in the form

9(x2_2x+ )+16(?/2 + 4?/+ )=8,
or

9(a;2-2a:+l)4-16(?/2+4?/+ 4) =8+9+ 64=81,

i,e,

9(x-l)2+16(?/ + 2)2 = 81.

-
i,

...,.--

ffffiMffl™
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Fig. 158

Hence this equation represents an ellipse whose center is at (1, — 2)

and whose axes coincide with the lines x = l,y = — 2. The remainder of

the discussion is left as an exercise. The graph is given in Fig. 158.

Example 4, Discuss and sketch the graph

of 9x2-36x-4?/2 + 24?/ = 36.

This equation may be written in the form

9(x - 2)2 _ 4(y - 3)2 = 36,

which is a hyperbola whose center is at (2, 3)

(Fig. 159). It is left as an exercise to com-

plete the discussion and prove that the equa-

tions of the asymptotes are 3(x — 2) +
Fig. 159 2(y - 3 ) = and 3(a; - 2) - 2{y - 3) = 0.

sry' " ^11-.
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EXERCISES

Discuss and sketch the graph of each of the following equations

1. a;2 + 42/ + 4 = 0.

2. x2 + ?/2 + 4 X - 8 y + 1 = 0.

3. x2 - ?/2 + 2 X = 0.

4. x2 - 4 X + 2/2 + 2 ?/ + 1 = 0.

5. x2 + 4 X + 2 2/2 + 4 y + 1 = a.

6. 9 x2 + 4 2/2 - 36 X - 8 2/ + 4 = 0.

7. 9x2-42/2- 36x + 82/ = 4.

8. 2/2 + 22/- 12x- 11 =0.

9. x2 + 15 2/2 + 4 X + 60 ?/ + 15 = 0.

10. x2 - 3 2/2 - 2 X - 6 2/ + 7 = 0.
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184. The Slope of the Curve Ax^ j^ By'^ -\-Dx -{-Ey + C = 0.

Let P(aJi, 2/i) ^^^d Q(Xi -|- ^x, y^ + A?/) be any two points on

the curve. Then

Ax,^ + By,^ + Dx, + ^2/i + C = 0,

^(a^i -h Ax-)2 + 5(2/1 + Ay)2+ i>(a;, + Aa;) + E{y, + A^/) + C = 0.

Expanding the second of these equations and subtracting the

first from it, we have

(2 Ax, + A^x + B)^x -I- (2 %i -f- SAt/ 4-^) a?/ = 0.

Therefore the change ratio, or the slope, of the secant PQ, is

A^ _ _ 2 Ax^ -\- A^.x + D
A.i-~ 2 By, -\- B^y -\- e'

If we let Aa; approach zero. A?/ will approach zero also. Why ?

Therefore the slope of the curve at any point (Xi, y,) is

2Ax,-\-Dm = —^—

•

2By, + E

Example. Find the equations of the tangent and the normal to the

curve x^ + 4y'^ — ix-\-2y — S = 3i,t the point (1, 1).

Solution : The slope of the tangent at any point (xi, yi) is

8^1+2
At the point (1, 1) this slope is |. Therefore the equation of the tangent

isy— l=i^(x— 1) and the equation of the normal is y — 1 = — 5(x — 1).

EXERCISES

1. Find the slope of the tangent to each of the following curves at

the point specified.

(a) x2 + 2?/- 3 = at (1, l)j

(b) x^-\-y^-4 = at (1, V3)^

(c) a;2-2 2/2 + 5 = at (1, V3);

(d) 4x^-\-y^-2x-Sy-lO = at (2, 1).

2. Find the equation of the tangent to each of the curves of Ex. 1, at

the point specified.
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IV. THE FORM Fxy + Dx + Ey + C =

185. The Graph of xy = a. The graph of the curve

xy = a

is symmetric with respect to the origin ; for, if the coordinates

Qi, k) satisfy the equation, the coordinates {— h, —7c) also

satisfy it. Since y = a/x, it is evident that x may assume all

Fig. 160 Fig. 161

values except 0. (See § 36.) As x increases numerically

without limit, the curve approaches the line y = 0, i.e. y =0 is

an asymptote. Similarly as y increases without limit, the

curve approaches the line a? = as an asymptote. It will be

proved later that the curve is a hyperbola, provided a is not

equal to zero. If a is positive, the graph is as in Fig. 160. If

a is negative, the graph is as in Fig. 161. If a is zero, the

graph consists of the two axes x = and y = 0.

186. The Graph of Fxy -\- Dx -\- Ey + C = 0. If in the equa-

tion xy = a we replace x hy x — h and yhjy — k, we know

that the graph of the resulting equation is obtained from the

graph of the original equation by moving the latter so that the

origin moves to the point (^, fc), the axes remaining parallel to
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their original positions. It follows that the equation

{x — h){y — k) = a{a^O)

represents a hyperbola whose asymptotes are x = h, y = k.

If a = 0, the equation represents the two lines x =^ h, y = k.

Example. Discuss and sketch the

graph of xy + 4x -{-2y = 1.

First we write

(ix±?){y±?) = l.

Then from inspection we see that the

given equation may be written in the form

(x + 2)(2/ + 4)=9.

That is, the graph is a hyperbola whose

asymptotes are x = — 2, y = — 4. (See

Fig. 162.) Fig. 1G2

187. The Slope of the Curve Fxy + Dx -^ Ey + C = 0. It

is left as an exercise to show that the slope of the curve

Fxy-^Dx-{-Ey-\-C=0

at any point (x^, y^ is

Fy,A-Dm = — -p—- •

Fxi -+- E

EXERCISES

1. Discuss and draw the graph of each of the following curves :

(a) xy = l; (b) xy=-l; (c) xy = 2; (d) xy =- 2;

2. Discuss and draw the graph of each of the following curves.

(a) xy + 2x = S; (b) xy + 2 x -\- iy = S; (c) xy - 4x + Sy =2,

3. Draw the family of curves xy = a, taking several positive and

several negative values of a. How does xy = 0, compare with these ?

4. Show that any equation of the form

^ cx + d

can be reduced to the form given in § 186.
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V. THE GENERAL FORM Ax^ + Fxy + By^ + Dx +Ey -\- C =

188. The Graph. Methods of drawing the graph of an

equation in the above form will be illustrated by means of the

following examples.

Example 1. Discuss and sketch the graph of

x^ + 2xy + y'-^ -2x-2=0.

Solving for y, we have y = — x ±y/'2x -\- 2. All values of x less than

— 1 must be excluded, for these values make 2 x + 2 negative. Similarly,

since x=—(y—l)± V — 2?/ + 3, it follows that all values of y greater than

I must be excluded ; for these values make
— 2 2/ + 3 negative. The a;-intercepts are

the roots of the equation a:- — 2 aj — 2 = 0,

i.e. 1 ± y/S. The ?/-iritercepts are the roots

of the equation y^—2=0, i.e. ± V2. From

y —— X ± V2 X -{ 2 it is seen that x may
start with the value — 1 and increase

without limit. Similarly from x = — (y—1)

±V— 2y + S we see that y may start with

the value f and decrease without limit.

Using the above data and plotting the

points
Fig. 163

X -1 1 2 1±V3

y 1 ±V2 1,-3 -2±V0

we obtain the graph in Fig. 163.

This, problem may be approached from an

entirely different standpoint. Suppose we let

y' = ± y/2 x-i-2 and y'f= —x. Plotting these

curves* (Fig. 164), adding the ordinates of

y' =±y/2x -\-2 to the ordinates ofy" = — x,

gives us the desired graph. This may be

done graphically. We have here a shear of

y' HZ
-t- v/2 x + 2 with respect to the line y"=

Y

,CS^ it-4^
s \l
\ ^D'^^c ^^
lS-^^ -J
-^ ^^
^^ Sv
^^ ^
\"^>sSv^5^

^ ^\ ^
3__r

Fig. 164

X. (See § 90.)

* Observe that the equation ?/' =± v'2 a: + 2 is equivalent to y"^ = 2{x + 1),
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Example 2. Discuss and sketch the

graph of

2/2 - 2 xy + 2 x2 — 5 a; + 4 = 0.

Solving for ?/, we have

y = x± V— x^ -\- dx — 4:.

Hence, we merely have to shear the circle

1/ -±V(x- l)(4-x),

X- + y2 _ 5 a; + 4 = 0,

with respect to the line y" = a: in order to

obtain the desired result. (See Fig. 165.)

The complete discussion is left as an exercise.

Example 3. Discuss and sketch the graph of

7 a-2 + 36 xy -S6y^-25 =
Solving for y, we have

y = lx± iVl6a;2-25,

Y. ^'^N -,'

-X ^'^

Z -.2
y Z i

-.^-Z I
t-7^ J^^^vy^ Z^^

z2^^ \

-/ - _ __ _
/O X

^ \ J^^^--^

Fig. 165

T7-
1

I
J

/ ^-^ - ^ "
U A y> .

^> - t ,^^%r^
^>s ^%^^-r^'i^

^ N / X '^^^ i-C
^ SZ ^ !&^::::::_::n^^::::^^:^: :_:_::::

-::^:::^--:^^-:S-J4^^^p-
~

) .^^"^ ^^''
,

*--U.
_ 2ES'' 1

N,^.
<^N 5^^».

yT^^i ^^l '

^^^Jl^\r •' ^ss
^^ ^ - t ^5^

^ J Si

?' ' it
^z :

^2 -

1

Fig. !()(>

which shows that the desired graph may be obtained by shearing

I.e.

y=±iVl6x2-25,

16a;2_36i/2_25 = 0,

with respect to the line y = \x (See Fig. 166.) The complete discussion

is left as an exercise.
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EXERCISES

Discuss and sketch the graph of each of the following equations :

1. Ax"^ + y"^ — i xy - X -\- S z= 0. 4. iy^ - ixy + x:^ = 1 - x.

2. 7f-2xy + 3x = 2. 5. Qy'^ -12xy -\-'Sx^ + ox = 6.

3. 2/2-8 xy +iex'^=l- x2. 6. y^ - 6xy -\- Sx^ - \0x - 25 = 0.

189. The Slope of the Curve Ax^ + By"^ + Fxy -\- Dx + Ey

+ C = 0. It is left as an exercise to prove that the slope m at

any point {xi, y^) is

. 2By,-^Fx,+E

EXERCISES

Find the equations of the tangent and the normal to each of the follow-

ing curves at the points indicated.

1. 48 x2 - 11 a;y - 17 2/2 - 129 a: + 24 ?/ + 81 = ; (2, 1), (3, - 3).

2. x?/ 4- 2 X - a;2 4- ?/2 + 6 2/ = ; (0, 0), (0, - 6).

3. 81 y2 + 72 xy + 16 x2 - 96 x = 378 y - lU
; (3, 2).

190. A General Theorem. The results of the examples and exercises of

§ 188 suggest that the graphs of equations of the second degree involving an

xy-term are similar to the graphs of equations of the second degree in which

the xy-term is lacking. We may now prove that this is a fact. The
theorem is as follows :

Any equation of the form Ax^ + Fxy + By- + Dx -{ Ey + C = repre-

sents either an ellipse, or a hyperbola, or a parabola, or two straight lines

{which may coincide), or a single point, or no locus.

We shall prove this theorem by showing that if the locus of the

equation

(20) Jx2 + Fxy -{- By"^ + Dx + Ey -\- C=0

be rotated about the origin through sl properly chosen angle d, its equation

will be of the form

(21) ^'x2 + Bhf + D'x + ^'y + C = 0.

The theorem then follows from § 183.
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We saw in § 137 that, if any point P(x, y) be rotated about the origin

through an angle ^ to a new position P'(a;', y'), the coordinates of P and

P' are connected by the relations :

x' =x cos d — y sin 6,

xsin d -\- y cos d.
(22)

Solving these equations for x and y in terms of x', y\ we obtain

X = x' cos d -\-y' sin d,

^ -^ y =— x' sin 6 -\- y' cos 6.

If P(x, y) satisfies equation (20), P'(x', y') will satisfy the equation ob-

tained by substituting the values of x, y from (23) in equation (20)

.

The result of this substitution is as follows :

A (x' cos d -\- y' sin d)^+ F(x' cos^ + y'sin e){—x' sin d -{- y' cos 6)

+ B(— x' sin e + y' cos ey
+ D{x' cos d + y' sin d)

+ E(—x' sin e + J/' cos ^) + O = 0.

When expanded and rearranged according to the terms in x', y\ we
obtain

(24) A'x'-^ + F'x'y' + B'yi'^ + D'x' + i^'?/' + C = 0,

where A' = A cos^ + P sin2 ^ - P sin ^ cos 6.

F' = 2(A- B) sin ^ cos ^ + P(cos2 6 - sin^ ^).

B' = A sin2 ^ + P cos2 ^ + P sin 6 cos ^.

D' = Bcos e— E sin ^.

E' = D sin ^ + P cos ^.

C" = C.

Equation (24) will be of the desired form (21), if the angle 6 is so chosen

that F' = 0. Now, F may be written

(25) P' = (^-P)sin2^ + Pcos2^:

F will, therefore, be equal to zero, if

tan 2 ^
^

B-A
A value of 6 satisfying the condition (26) can then always be found.*

This completes the proof of the theorem.

The following exercises will illustrate the above proof. The method

may also be used to draw the graphs of equations involving the xy-term.

* If ^ = ^, we take 26 = 90°, i.e. d = 45°.
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EXERCISES

Determine the angle ^through which the loci of the following equations

must be rotated in order that their new equations shall contain no xy-term.

Determine the new equation and use it to draw the locus of the original.

1. Sx^ + 4xy -\-5y'^-36 = 0.

Solution : After substituting x =x' cos -\- y' sin ^, y z=— x' sin d

4- y' cos 6, the equation becomes

(1) (8 cos2 ^4-5 sin2 6- 4: sin 6 cos e)x'^

+ [6 sin d cos e-i- 4(cos2 d — sin^ e)'\x'y'

+ (8 sin2 6+ b cos^ ^ + 4 sin ^ cos 0)i/'2 _ 35 _ q.

2 tan e
Therefore, tan 2 ^ = —

3 1 - tan2 d

Solving this equation for tan 6, we have

4 tan2 ^ _ 6 tan — 4 = 0,

or tan ^ = 2 or — ^.

We choose tan 6

rant) ; therefore

2

V5'

2 (^ in first quad-

.

5
'

. "T^ ^._ ^ -

^s ^
/ \" -S ^"^

t ^' S.^J'

jj ^ ^^
ji:_.i
\^ \ 1 /

^'\ \ J^^^ A ^ mrcltan 2

"
\

y'

\

.

Sin cos d

.

1

Substitutin,

obtain

2. x2 - ?/2 _|_ 2 xy - 12 = 0.

5 these values in (1) we

4 x'2 + 9 ?/'2 = 36.

The desired graph is obtained from the

grajjh of this equation by rotating it

through the angle — Q about the origin.

The construction of the adjacent figure

explains itself.

5. 3 x2 - 2 a;?/ + 1/2 ^ 6 = 0.

12 = 0. 6. 8x2 12 xy + 3 y2 _ 36 = 0.

3 ?/2 + 42 = 0.

3. x2-y2_|.2x?/ + 2x

4. xy = 4. 7. 2 x2 - 12 xy

8. 6 x2 + 4 xy - ?/2 + 48 X - 12 y - 10 = 0.

9. 9 2/2 + a;2 + 2 xy = 0.

10. Prove that the locus ot xy = c may be rotated about the origin so

as to coincide with the locus of x^—y'^ — a^, provided a^ =±2c.

11. With the notation of § 190, prove that A' -\- B' = A -\- B and that

{A' - B')^ + F'-^ =(A- BY + F\



PART III. APPLICATIONS TO GEOMETRY

CHAPTER XI

THE STRAIGHT LINE

191. Introduction. We have hitherto used coordinates pri-

marily for the purpose of representing functions graphically

and investigating the properties of those functions. We have

seen that every continuous function defines a curve or a

straight line, the graph of the function. Thus far, we have

laid emphasis only on the discovery of the characteristics of the

functions from the known properties of the curves that repre-

sent them.

Conversely, we have seen that every curve or straight line,

in the plane of a system of rectangular coordinates, defines a

function ; i.e. the points of any such curve associate with every

value of X one or more values of y. If this function can be

determined when the curve is given, the properties of the

curve may be studied from the properties of the function.

This function is usually expressed by means of an equation in

X and y, called the equation of the curve. We propose now to

study the properties of various curves by means of their equa-

tions. (See § 62.)

Up to this time, we have used different scales on the two

axes whenever it was convenient to do so. Throughout this and

the next four chapters we shall assume, unless the contrary is

specifically stated^ that the units on the x- and y-axes are equal.



294 MATHEMATICAL ANALYSIS [XI, § 192

192. The Distance between two Points. Given the two

points Pi {xi, yi) and P2 {x2, y^)^ let us find the length of the

segment PiP^- If a line be drawn through Pj parallel to the

ic-axis and another through P2 parallel to the 2/-axis to form

the right triangle P1QP2 (Fig. 167), we have at once

(1) P,P,=^J\Q' + QPl

T
P.^

N,
Pr^

Q

Mr M,'X

Fig.

Pi

M,

N,

JU

The segment PiQ is equal to the projection M^M^ of PxPi on

the a^-axis and (^P^ is equal to the projection NiN^ of P1P2 on

the 2/-axis. By the result of § 37, we have

PiQ= M^M^ = x.^— ccj,

QA=i^==2/2-2/i.

Substituting these values in (1), we have the desired formula

:

(2) PxP,=V(x2-Xiy-j-{y,-yi)\

193. The Simple Ratio. Given two distinct points Pj, P2

and any point P (distinct from P2) on the line P1P2, the ratio

P1P/PP2 is called the simple ratio of P with respect to Pi, P2.

The line-segments in this definition are directed segments.

Accordingly the simple ratio of P with respect to Pi, P2 is

positive if P is between Pi and P2, and negative if P is on

either prolongation of the segment P1P2.
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194. Point of Division. The coordinates (x, y) of the point

P on the line joining Pi (x^, y^ to P2{x2y 2/2) such that the

simple ratio

are given by the formulas

(3) ;C=£l±J^, ^^J/l + Xyg.

1 + X l + X

Proof. Draw lines through Pi, Pg,

P parallel to the axes, meeting the

jc-axis in Mi, M^, M, and the y-axis

in Ni, N2, N, respectively (Fig. 168).

Then, since P1P/PP2 = X, we have

MiM ^ ^^=X
MM^ ' NN,

The first of these relations gives (by § 37)

X2 — X

Solving this equation for x gives

Xi + \X2

r

N
Ml /

P

M

^2

/ X
Pi N, Q

Fig. 168

x =
1+A

Similarly from the second relation above we obtain

y =_ 2/1 + ^2/2

1+X
The mid-point of P1P2 is obtained from the value A = 1. Why ?

Accordingly the coordinates of the midpoint of P1P2 are

fxi + X2 Vi + y2\

l~2-' 2 )
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EXERCISES

1. Find the distance between the following pairs of points : (1, 2)

and (5,3); (- 1, 6) and (2, -3); (-2, -1) and (-1,4); (-3,4).

and (1,4).

2. Find the lengths of the sides of the triangle whose vertices are

(—1, 1), (4, — 4), and (1, 3). Prove that it is a right triangle.

[Hint : A right triangle is the only kind of triangle in which the square

of one side is equal to the sum of the squares of the other two sides.]

3. An isosceles triangle has its vertex at (4, 4) and the vertex of one

of its base angles at (0, — 1). The vertex of the other base angle is on

the a;-axis. Find the coordinates of the latter vertex.

[Hint : Let the unknown point be (ic, 0) and equate the equal sides.

How many solutions are there ?]

4. Find the coordinates of the point whose simple ratio with respect

to (2, 1) and (—4, 7) is 2. Find the coordinates of another point

whose simple ratio with respect to the same two given points is — 2.

Draw a figure illustrating this problem.

5. Check the result of Ex. 4 by calculating the lengths of the seg-

ments involved.

6. Find the coordinates of the point which divides the segment from

(2, — 1) to (— 4, 3) internally in the ratio 1 : 4.

7. Find the coordinates of the mid-points of the sides of the triangle

in Ex. 2.

8. A quadrilateral has its vertices at the points (—2, 1), (3, 1),

(5, 3), and (0, 3). Show that its diagonals bisect each other. What
kind of a quadrilateral is it ?

9. Find the coordinates of the points of trisection of the segment

from (3, -6) to (0, 3).

10. A triangle has its vertices at the the points (0, 4), (2, — 6), ( - 2,

— 2) . Find the coordinates of the points two thirds of the way from

each vertex to the middle point of the opposite side, and thus show that

the three medians of the triangle all pass through the same point.

11. The vertices of a triangle are (xi, yi), {xi,y-2), (scs, yi). Find
the coordinates of the point of intersection of the medians.

12. Show that the triangle ^1(4, 1), i?(l, 4), C(5, 6) is isosceles.
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13. One end of a line whose length is 13 units is at the point (3, 8).

The ordinate of the other end is 8. What is its abcsissa ?

14. The middle point of a line is (2, 3) and one end of the line is at

the point (4, 7). What are the coordinates of the other end ?

15. The points (2, 1), (3, 4), (— 1, 7) are the mid-points of the sides

of a triangle. Find the coordinates of the vertices.

16. Find the area of the isosceles triangle whose vertices are (4, 1),

(1, 4), (5, 5) by finding the length of the base and the altitude.

17. What equation must be satisfied if the points (a:, y), (2, 1), (1, 4)

form an isosceles triangle the equal sides of which meet in (ac, y)?

18. Prove that the points (- 2, - 1), (1, 0), (4, 3) and (1, 2) are the

vertices of a parallelogram.

19. The line from (xi, yi) to (^2, ?/2) is divided into 5 equal parts.

Find the coordinates of the points of division.

20. A point is equidistant from the points (2, 1) and (—2, 1) and 7

units distant from the origin. Find its coordinates.

QUESTIONS FOR DISCUSSION

1. Does the distance between two points depend on the order in

which the points are taken ? Does the formula for the distance give the

same result no matter in which order the points are taken ? Why ?

2. Does the simple ratio of a point with respect to Pi, P2 depend on

the order in which the points Pi, P2 are taken ? What is the relation

between the simple ratio of P with respect to Pi, P2 and the simple ratio

of P with respect to P2, Pi ?

[ Hint. The answer to this question follows most easily from the defini-

tion of simple ratio. Prove the relation in question by means of the

formulas in § 194.
]

3. Can the simple ratio of a point P with respect to Pi, P2 be — 1 ?

Why ? As the simple ratio approaches —1 what is the motion of P?

4. What can be said of the position of the point P, if its simple ratio

with respect to Pi, P2 is positive ? if its simple ratio lies between and

— 1 ? if its simple ratio is less than — 1 ?

6. If the simple ratio of P with respect to Pi, P2 is X, what is the

simple ratio of Pi with respect to P and P2 ? of P2 with respect to Pi

and P ?
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195. The Area of a Triangle. One Vertex at the Origin.

Let us try to find the area of a triangle whose vertices are

0(0, 0), Pi(xi, yi), and P2(^'2j 2/2)- I^^t the angles XOPi and

XOP2 be denoted by Oi and O2, respectively, and let the angle

F1OP2 of the triangle have the absolute measure 6 (Fig. 169).

Fig. 169

The area of the triangle is then equal to ^ OPi • OP2 sin 0.

Now, the directed angle P1OP2 differs from 62 — ^1, if at all,

only by multiples of 360° (§ 101). Therefore

sin ^ = ± sin (PiOP2)= ± sin {$2 - ^1).

The area of the triangle OP1P2 is, then,

A=:±^OPi' OP2 sin(^2 - ^1)

= ± I OPi ' OPsCsin $2 cos $1 — cos $2 sin ^1)

(§138)

= ±iOP,-OP, 2/2 _^i ^ Jh\
OP2 OPi OP2 OPj

The area of the triangle OP1P2, in the ordinary sense of the

term, is therefore equal to the absolute value of the expression

l(xiy2 - XiVi).

For some purposes it is convenient, however, to regard the

area enclosed by a curve as a signed quantity, just as we have
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found it convenient to regard line-segments and angles as

signed quantities.

To this end, we observe that a point moving on the boundary

of an area may make the circuit in either of two opposite

directions (Fig. 170). With each of these directions is asso-

ciated a definite rotation about a ^...,,^^ ^^^
point within the area. If the bound- ( ^^X ^ J^^
ary is traversed in a direction which \S^ X^x"^
produces a positive rotation about a positive arcuU Negative circuit

point within the area, the circuit and ^^^- ^"^^

the area are regarded as positive ;
if the boundary is traversed

in the opposite direction, the circuit and the area are regarded

as negative. Hence if an area is represented by a signed

number, the sign of this number tells us the direction in which

the boundary is traversed.

In case of a triangle OP1P2 (Fig. 169) the order in which

the vertices are written determines a direction of traversing

the boundary. If OP1P2 is positive, OP2P1 is negative, and

vice versa. Now in going around the triangle in the direction

OP1P2, a segment OP joining to a point P moving on P1P2

generates a directed angle PiOP^- This angle is positive or

negative according as the circuit OP1P2 is positive or negative.

Moreover the measure of the angle PiOPo differs from 62 — ^1,

if at all, only by multiples of 360°. The expression

i OP, ' OP; sin((92 - ^1)

is, therefore, positive or negative according as the circuit OP1P2

is positive or negative. We have then finally :

The area of a triangle OP1P2 is given in magnitude and in

sign by the formula

(4) Area OP^P. = lixiUo - ^^2^1)-
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196. The Area of Any Triangle. The convention as to the

sign of an area is serviceable in deriving a formula for the area

of any triangle in terms of the coordinates of its vertices.

Let the vertices be Pi(xi, yi), P2(^) 2/2)) ^3(^*3? Ik)- Join these

vertices to the origin by lines OPi, OP2, OPs. We novr con-

sider the three possible cases, according as the origin is inside

><a!
^^
Fig. 171

'1^

Y

X-

\y X

k
Fig. 172 Fig. 173

(Fig. 171), outside (Fig. 172), or on, a side (Fig. 173) of the

triangle PJ^JP^. Then in all cases, we have

A P,P,P, = AOP.P, + AOP2P3 + AOP.Pi,

if due regard is taken of the signs of the areas. Hence

(5) Area of A P.P^P^^ \{if',x, - x^y, + y,x^ - x^y^ + y^x^ - x^y,).

It might appear that this formula is difficult to apply. The following

method makes it very simple. Write the coordinates of the

vertices in two vertical columns as indicated, repeating the

coordinates of the first vertex. Multiply each x by the y in

the next row and add the products. This gives iCi?/2+X2y3+X3i/i.

Then multiply each y by the x in the next row and add the

products. This gives yiX2 + y^Xs + ysXi. Subtract the second sum from

the first and divide the result by 2. The final result will be the area

sought, with its proper sign-* A similar method may be used for finding

the area of any convex polygon whose vertices are given. See Exs.

6, 7, 8, pp. 301, 302.

* The student familiar with the elements of the theory of determinants

will .observe that the area can be expressed as

A=i

Xi yi

X2 Vi

X3 ya

Xi y\

Xl V\ 1

Z2 2/2 1

Xg Vs 1
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Example. Find the area of the triangle whose vertices are Pi(— 4, 3),

P2(— 1, - 2), PaC— 3, - 1). We write the coordinates of the

vertices in two columns, repeating those of the first vertex.

Performing the first step described in the previous paragraph ~
q
~

i

we obtain 8 + 1 — 9 = 0; the second step gives — 8 + 6 + 4

= 7 ; the third step gives 0— 7 =— 7 ; dividing this by 2,

we obtain — 3^ as the area of triangle P1P2P3. The magnitude of the

area is 3^ square units, and the direction Pi to P2 to P3 is negative.

Draw the figure and verify the latter statement.

197. Condition for CoUinearity of three Points. If three

points Pi, P2, P3 are collinear, the area of the triangle formed

by them is zero ; conversely, if the area of a triangle is zero,

the three vertices are collinear. Therefore, a necessary and

sufficient condition that three points be collinear, is that the right

hand member of (5), p. 300 be equal to zero.

EXERCISES

1. Find the areas of the following triangles and interpret the sign of

the result in each case. Illustrate by appropriate figures.

(a) (1, 3), (4, 2), (2, 5). (c) (- 5, 2), (- 4, - 3), (1, -1).

(6) (2, 4), (- 3, 1), (1, - 7). (d) (a, a), (- 6, - 6,) (c, d).

2. Show that the following sets of three points are collinear :

(a) (0,1), (2,5), (-1, -1). (c) (1,-2), (6, 1), (-4, -5).

(&) (2, 1), (- 4, 4), (4, 0). (d) (0, -6), (1, a-6), (a, a^-b).

3. The point (h, h) is collinear with (2, 5) and (5, - 3). Find its

coordinates.

4. Find the point on the y-axis collinear with (2, 5) and (5, — 3).

6. Under what conditions on a, b, c, and d are the points in Ex. 1 (d)

collinear ? Interpret each of the conditions geometrically.

6. Area of any polygon. Show that the method of § 196 may be ex-

tended to derive a formula for the area of any polygon in which two

sides do not cross each other, and that if P1P2P3 -" Pn are the vertices of

the polygon taken in order around the polygon, we have

Area of polygon = A OP1P2 + A OP2P3 + A OP3P4 + ... + A OP„Pi,

if due regard is paid to signs.
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7. Find the area of the quadrilateral whose vertices are (1, 2),

(-2,3), (-3, -4), and (4, -5).

8. Find the area of the polygon whose vertices are (4, 1), (2, 3),

(0,4), (-2,3), (-4,1).

9. Prove that the points (1, 2), (3, 6), (—1, — 2) are collinear.

10. Show that the area of the triangle whose vertices are (2, 6),

(— 4, 3), (—2, 7) is four times the area of the triangle formed by join-

ing the middle points of the sides.

198. Applications to the Proof of Geometric Theorems.

We shall now give a few elementary examples to show how
the methods hitherto developed may be used in the proof of

geometric theorems.

Example 1. Prove that the line joining the vertex of any right tri-

angle to the mid-point of the hypotenuse is equal to half the hypotenuse.

Let ABC be any right triangle. In order to apply the methods of

coordinates we must first locate a pair of coordinate axes. Any two

perpendicular lines will serve the purpose, but the

work incident to the solution of many problems

may usually be greatly simplified if we choose

the axes judiciously. In this case it is convenient

(a,o')~x ^° choose the legs of the triangle as axes. The

F 174.
coordinates of the vertices are then (Fig. 174)

(0, 0), (a, 0), and (0, &). The midpoint of the

hypotenuse is (§ 194) (a/2, b/2). The length of the line joining this

point to (0, 0) is V(a72JHjbj2y = ^VoM^ But the length of the

hypotenuse is Va'^ + b'^. This proves the theorem.

Example 2. Prove that the diagonals of a parallelogram bisect each

other.

Let ABCD be any parallelogram. Let a side of the parallelogram lie

on the X-axis a vertex being at the origin.

(See Fig. 176.) We may assign the coordinates

{a, 0) to the vertex B, and (6, c) to the vertex

D. The coordinates of C will then be (a-f-&, c). —q
Why?
We now calculate the coordinates of the

•PCb.c) C(a+6.o)

£̂{0,0-) X
Fig. 175

mid-point of ^C and also of the mid-point of BD, by the formula of

§ 194. It will then be seen that the midpoints coincide.
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Example 3. Prove that if the lines joining two of the vertices of

a triangle to the mid-points of the opposite sides are equal, the triangle

is isosceles.

Let ABC be the triangle, M^ N the mid-points of

the sides AC^ BC, respectively, with AN'= BM. Let

the a;-axis lie along the side AB and let the y-axis

pass through the vertex C (Fig. 176). Let the coordi-

nates of A, B, C he (a, 0), (&, 0), (0, c) respectively.*

We must first state the hypothesis of the theorem

analytically, i.e. in terms of the coordinates. To this
^^'

end we note that the mid-point of AC is M = {a/2, c/2), and that

BM^'

Y
/

CCo.c)

J>P^ X
A(a,o)

. B(b,o)

Similarly, we have AN^ = (a-^Y-h-

By hypothesis, AN = BM. Hence we have

This condition gives

(-f)=.(«-|>
which, when simplified, gives either a = b or a=— b. The first result

would imply that the points A and B coincide, which is contrary to the

hypothesis, and is therefore rejected. The second result yields readily

that AC= BC, which was to be proved.

EXERCISES

1. Prove analytically that the diagonals of a rectangle are equal.

2. Prove analytically that the line joining the mid-points of two sides

of a triangle is half the third side.

* In the figure a is a negative number. However, the discussion that follows

applies at the outset to any numbers, a, b, c. It will appear later in the dis-

cussion that, under the hypothesis of the theorem, a and b must have opposite

signs. One of the advantages of the analytic method is the fact that it is

general, and that ordinarily special cases do not have to be considered

separately.
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3. Prove analytically that two triangles with the same base and
equal altitudes have the same area.

4. ABCD is a parallelogram, with A^ C as opposite vertices. JIf and
iVare the mid-points of the sides AB and CD respectively. Prove ana-

lytically that the lines AN and CM trisect the diagonal BD.

5. If P is any point in the plane of a rectangle, prove analytically

that the sum of the squares of the distances from P to two opposite

vertices of the rectangle is equal to the sum of the squares of the dis-

tances from P to the other two vertices.

6. Prove analytically that, if the diagonals of a parallelogram are

equal, the figure is a rectangle.

7. Prove analytically that the two straight lines which join the

mid-points of the opposite sides of a quadrilateral bisect each other.

8. Show analytically that the figure formed by joining the middle

points of the sides of any quadrilateral is a parallelogram.

9. If ilf is the mid-point of the side BC of any triangle ABC, prove

that AB2+ AC^ = 2(AM^ + MC'^).

10. Prove analytically that the distance between the middle points of

the non-parallel sides of a trapezoid is equal to half the sum of the

parallel sides,

11. The difference of the squares of any two sides of a triangle is equal

to the difference of the squares of their projections on the third side.

12. Prove that the sum of the squares of the sides of any quadrilateral

is equal to the sum of the squares of the diagonals plus four times the

square of the distance between the middle points of the diagonals.

13. If A^ jB, O, Z) are four points of a line prove the relation (due to

Euler) : AB CD-\-AC DB-\-AD • BC=0. (The segments are directed.)

14. IfM and iV, respectively, are the mid-points of two segments J.B and

CD on the same line, show that 2 il/iV= AC + BD= AD + BC.

15. If 31 is the mid-point of AB and P any other point of the line AB,
show that PAPB= PM^ - MAK

16. Two sources of light of intensity a and /3 are situated at the points

A and B respectively of a line. Find the position of a point on the line

which is lighted with the same intensity by the two points. How many
points satisfy the relation ?

[Hint : The intensity of light at a point varies inversely as the square

of the distance of the point from the source of light and directly as the

intensity of the source.]
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17. Two objects of weights Wi, w^ are situated at the points A^ Ao.

The center of gravity of the two objects is defined to be the point of the

line A1A2, whose simple ratio with respect to Ai, A2 is W2/W1. If Ai, A2
are on the x-axis, and their coordinates are Xi, X2^ find* the coordinate of

the center of gravity. Show that the center of gravity does not exist, if

Wi = — W2. Give an interpretation to a negative w.

18. Given n weights lOi, wo, •,Wn situated at the points Ai, A2, -••, A^
on a line. Find the center of gravity of ^1, A2 with weights Wi, W2

;

then the center of gravity of the point found taken with th^ weight

Wi 4- W2 and A3 with the weight W3 ; then the center of gravity of this

new point taken with "the weight Wi + W2 + 103 and A^ with the weight 104 ;

and so on. Show that when all the ?i points have been used, there is

obtained a point which is independent of the order in which the points

were taken. The point thus determined is called the center of gravity of

the n points. When does no center of gravity exist ? Under what coy-

ditions is it indeterminate ? Show that if the latter conditions hold, each

of the given points is the center of gravity of the remaining ones each

taken with the weight assigned to it.

19. The first (or static) moment of a point P of weight w about a line

I is defined to be the product of lo by the distance of P from I. Given n

points Pi =CXi, yi)(i= 1, 2, .-., n) in a plane with weights lOc, respec-

tively, determine the coordinates of a point P of weight lOi + «?2+ -•• 4- Wn
such that its moment about the x-axis shall be equal to the sum of the

moments about the x-axis of the points P,- and such that its moment
about the y-axis shall be the sum of the moments about the y-axis of the

points Pi. The point P is the center of gravity of the set of points. Com-
pare with the result of Ex. 18.

20. The second moment or the moment of inertia of *a point P with

respect to a line I is defined to be the product of the weight 10 of P by the

square of its distance from the line. Given n points Pi in a plane whose

distances from a fixed line I are Xi, and whose weights are Wi respectively.

Let Ml be the sum of the first moments, M2 the sum of the second

moments of these points about the line I. Let V be a second line, paral-

lel to the first and h units from it (to the right or left according as h is

positive or negative), and let Mi and iHf ^ be the sum of the first and sec-

ond moments of the given points about I'. Let W be the sum of

the weights Wi -{- 102 + ••• + Wn. Show that

M'i = Mi-hW and M'2 = Mif-2hMi + h^W.
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199. Directed Lines and Angles. An angle from a directed

line li to a directed line I2 is an angle through which li must

be rotated to . make its direction coincide with that of Zg.

Any such angle we denote by {li y. Clearly

if li and Zg intersect in a point M (Fig. 177),

(Zi Z2) is the directed angle from Zi to l^ as

^^' '

defined in § 98 since the directions of Zj and Z2

define uniquely the half-lines issuing from M. As we observed

in § 101, an angle (Zi I2) may have various determinations

diifering from each other by multiples of 360°.

The angle from the aj-axis to a directed line Z is called the

inclination of Z (Fig. 178). If the inclination of a directed line

Zi'is 61 and the inclination of a directed line l^

is $2, the angle from Zi to Z2 is given (§ 101) by

the equation

(6) (/i/2)=e2-ei,

where the equality sign means equal except

possibly for multiples of 360°. Fig. 178

200. Undirected Lines and Angles. If two lines Zi and Z2

are not directed, an angle from Zi to Z2, defined as an angle

through which l^ must be rotated to make it parallel to Zg, will

have various determinations which differ by

multiples of 180° (Fig. 179). The smallest

positive (or zero) angle from Zi to Z2 is then

Fig. 179 unique and less than 180°. The inclination of

an undirected line is defined as the smallest positive (or zero)

angle through which it is necessary to rotate the a;-axis in order

to make it parallel to the line. In Chapter III we used the

slope m of a line to measure its inclination. It follows almost

immediately from the definition of slope m and inclination 6

that we have m = tan 0.
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To calculate the angle from a line l^ to a line l^ we make use

of (6), § 199, if the inclinations 0^, 6^ of l^, I2 are known. If

the slopes mj, m^ of Zj, I2 are given, we lind from (6), § 138

tan (Zi /a)
= tan (0. - O,) = tan 62 - tan 0^

^
'

'^
^ - /^ 1 + tan O2 tan ^1

But tan ^1 = wii and tan 0^ — ^2- Hence we have

As special cases of this relation we obtain the familiar condi-

tion for parallelism and perpendicularity (§§ 64, ^^^. For, if

the lines are parallel, (Zi l^— 0° or 180° ; hence m^ — m^.

If the lines are perpendicular, (Zi, Zo)= 90° or 270°
; hence

l-f-mim2 = 0, or mi= •

mo

201. Standard Forms of the Equation of a Straight Line.

We recall here for reference the standard forms of the equation

of a straight line derived in Chapter III

:

The general equation : Ax -\- By -^ C = 0.

The slope form : y = mx + b.

The point-slope form : y — Ui = ^{x — Xi).

The last two forms are not general, since they will not serve to

represent lines parallel to the 2/-axis. The first is general. If

the first represents a line not parallel to the ?/-axis (B =^ 0), it is

readily reduced to the slope form, by solving the equation for y

:

A C
y = X — —

•

^ B B

This yields, as was shown in § 63,

A
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EXERCISES

1. Construct a line through the point (— 2, 3) having an inclination

of 00°. What is the slope ? Write the equation of the line. Find the

points at which the line crosses the a:-axis and the y-axis.

2. Proceed as in Ex. 1 for a line passing through the point (2, — 3)

with an inclination of 135°.

3. Find, to the nearest minute, the inclination of each of the follow-

ing lines. Use a table of natural functions.

(a) 2x-Sy = 0. (c) x = 2.1y + 3.5. (e) x - ?/ + 249 = 0.

{b) y = OAx-{-l.'I. (d) 7x-\- Sy-8 = 0. (f)x + 2y+6 = 0.

4. Fhid the tangent of the angle from the first line to the second line

of each of the following pairs. Then find the angle.

{a)2x-Sy = 0, (c)x + 3y-3=0,
ic + 2y+7=0. 3x — ?/ + 6=0.

(b) 6x + 2y -10 = 0, (d) y = 2x + 3,

2x-|-32/ + 6 = 0. Sx + y-6 = 0.

5. Find the equation of the line through (4, 5) and parallel to the

line joining (—1,2) and (2, — 3).

6. Find the equation of a line through the intersection of2x + y — 5=0
and x — 3y+5 = 0, and perpendicular to the line 2x — 3?/-fG = 0.

7. An isosceles triangle has for its base the line x—2 y+2=0 and for

its vertex the point (— 3, 5). The base angles are 45°. Find the equations

of the other two sides and the coordinates of the other two vertices.

8. Given the lines aiX + biy + ci = and a^x + 62?/ -{- C2 = 0. Show
that they are parallel, if and only if 05162 — «26i = ; and that they are

perpendicular, if and only if aia2 + &162 = 0.

9. The sides of a triangle have slopes equal to ^, 1, and 2. Show
that the triangle is isosceles.

10. Find the angles of the triangle whose vertices are (3, 4), (— 3, 6),

and (2, - 1).

11. Find the slope of the bisector of the angle which a line of slope — 2

makes with a line of slope 3.

12. The slope of a line AB is 2. Find the equation of a line through

the origin which makes with AB an angle whose tangent is — 1.

13. P is any point on the curve whose equation is 2/2 = 4 x. Show that

the tangent to the curve at P bisects the angle which the line joining P to

the point (1, 0) makes with the line through P and parallel to the x-axis.
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202. The Expression Axi-{-Byi-\- C. The expression x — 2y

-f 3 has the value + 2 when x = l and y = 1', the value when

x = —l and 2/ = 1 ; the value — 2 when a; = — 3 and y=l.

The only interpretation we are able thus far to give to these

facts is that the second set of values for x and y are the coordi-

nates of a point (—1, 1) which is on the line whose equation is

x-{-2y -{- 3 =0, while the other sets of values are the coordi-

nates of points not on this line.

It seems reasonable to expect, however, that the value of

the expression xi—2yi-\-3, where (x^, y^) is any point in the

plane, must have some relation to the line whose equation is

x — 2y-\-3 =0. This relation is indeed very simple. * The

reader should have no difficulty in proving that the value -f 2

obtained ^bove from the point (1, 1) represents in sign and

magnitude the directed segment drawn parallel to the a;-axis

from the line to the point (1, 1). Similarly, the value — 2

represents the segment drawn parallel to the a>axis from the

line to the point (—3, 1).

We proceed to show that a similar result applies to the

values of the left-hand member of the equation of any line in

the form Ax^By-\-C=0.
Let the line I (Fig. 180) be the line whose equation is

Ax-\-By-{- (7=0, where we assume A=^0,

and suppose the equation has been

written so that A is positive. Why is

this last always possible? The line is

then not parallel to the aj-axis. Why ?

Let Pi{xi, yi) be any point in the plane

and let Q(/i, y^ be the point in which

the line through P parallel to the a;-axis meets I. Since Q is

on ?, we have ^i , td , n a

or By^-\-C = - Ah.

e;^!^ Pi(x,.v,)

Fig. 180
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The value of Axi -{- Byi + C, wliicli we are seeking, is therefore

equal to Axi — Ah, or A{xi — h). But Xi — h represents, in sign

and magnitude, the segment QPi- We have then,

Ax^ + By,+ C = A'QP;.

We conclude that, HA is positive, the number Axi -f Byi + C is

positive if {xi, 2/1) is to the right of the line Ax-\-By-{-C=0, and

negative if (xi, 2/1) is to the left of this line. Moreover, Axi+ Byi + C
is proportional to the horizontal distance from the line to the point

(a^i, 2/i)-

Finally, if ^ = and B =^ 0, we may suppose the equa-

tion By-{-C=0 so written that B is positive. The line I is

then parallel to the a;-axis. Writing its equation in the form

y =— C/B, it is readily seen that the expression

-m2/. -(t5^ 1
=

2/1+

J

represents the directed segment drawn parallel to the y-asia

from the line to the point Pi (Fig. 181). We may then con-

clude that, B being positive, the number Byi-^-O
^li^vVi) is positive if the point (x^, y^) is above the line

1 By + C = 0, and negative if the point {x^, y^
is below this line. Moreover, Byi + C is jyro-

portional to the distance of the point from the

line.
Fig. 181 ^ , ,. , ,. . . ,By the preceding results, we may distinguish

between the positive and negative sides of a line. If the equa-

tion of a line is written in the form Ax -\- By -{- C = and so

that its first term is positive, the right-hand side of the line is

positive and the left-hand side is negative, unless the line is

parallel to the aj-axis. In the latter case the upper side is

positive and the lower side is negative.
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T
-/;

qA-^t,,.,

/
/

/^ X
Fig. 182

203. The Distance of a Point from a Line. The results of

tlie last article enable us to find the perpendicular distance

of a point Pi(aJi, y^ from the line whose

equation is Ax + By -f (7 = 0. If

A 4=^, the required distance d = MPi
(Eig. 182) is evidently equal to QPi sin^,

where 6 is the inclination of the line.

This is true whether the inclination is

acute or obtuse, and whether P^ is on

the positive or negative side of the

given line. Since 0° ^ ^ < 180°, sin 6 is necessarily positive, and

d = QP^ sin 6 will have the same sign as QPi ; i.e. it will be

positive when Pi is on the positive side of the line, and nega-

tive when Pi is on the negative side.

We have, from the preceding article,

QP _ Axi + By, + C

and, since tan B = — A/B, we have

sin^ = ^
VA^-{-&

Hence, the required distance is

(8) MPi=d = '^^'i±^Mi±£,

If .d = 0, the required distance, by § 202, is simply

,
, C Byi + C

^^ B B
But this is precisely what (8) becomes for ^ = 0. Hence (8) is

true in every case.

The distance d is positive if (xi, y^ is on the positive side of

the line, and negative if (a^i, 2/1) is on the negative side, provided
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the equation is written in the standard form with the first term

positive.

Example 1. To find the distance from the line 2a;— S?/— 10 =0 to

the point (— 3, 1). Since the equation is in standard form the desired

result is obtained by substituting the coordinates of the given point in the

left-hand member of the equation and dividing by the square root of the

sum of the squares of the coefficients of x and y. Hence the distance d
^®

^^ 2(-3)-5. 1-10 ^-21
V2'-^-|-(-5)2 V29

The negative sign indicates that the point is at the left of the line.

Example 2. Find the equation of the bisector of the acute

+ 12 = and 4 ic - 3 ?/ + 6 = 0.

First draw the lines (Fig. 183).

know from geometry that the bisector of

an angle is the locus of the points equidis-

tant from the sides of the angle. Let (x, y)

be any point on the desired bisector. In-

spection of the figure shows that (aj, y) is

on the positive side of one of the lines and

on the negative side of the other. Hence,

any point on the desired bisector must

satisfy the condition that its distance from

one of the lines is equal to minus its dis-

tance from the other. This condition is

expressed by the equation :

between the lines 3 x -4y-

p
T7

A

/./
/y

y
p'

J
^^/
^^'/

<-^J-7 - ,' X
-^i-f-
-i^i7

angle

We

Fio. 183

(9)

or

(10)

3 X — 4 j/ -f 12

5

4 a- - 3 y -h 6

5

18=0.7x-7y

Moreover, any point which satisfies relation (9) is a point of the bisector.

Hence, we conclude that the equation 7x — 72/ + 18 = Ois the required

equation.

NoTK. Had the equation of the bisector of the obtuse angle been

desired the figure shows that in this case a point on the bisector is either

on the positive side of both lines or on the negative side of both lines.

Hence, any such point must satisfy the relation obtained by placing its

distance from one line equal to its distance from the other line. The
equation of this bisector is x -f- y 4- 6 = 0.
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Example 3. Prove that the locus of a point which moves so that the

algebraic sum of its distances from any number of fixed lines is constant,

is a straight line.

Each of the given straight lines has an equation of the form

ax+by -\- c = 0. The distance of any point (x, y) from such a line is

ax -\- by ^- c
^

Va^ + &2

The equation of the required locus is, therefore, of the form

aiX -hbiy -\- ci
^

^

anX +M + Cn _ q^

Since this is an equation of the first degree, the locus is a straight line.

EXERCISES

1. Without using a figure determine whether the following points are

at the right or the left of the line 2x + 3?/ - 5 = 0: (1, 2), (1, - 1),

(- 2, 1),(1, 1), (4, - 2), (7, - 2), (4, - 1). Then, draw a figure con-

taining the line and the points and verify the results obtained.

2. Find the distance of the point (3, —2) from the line 4x—3y+6=0.
3. Find the distance of each of the following points from the line

associated with it. In each case interpret the sign of the result.

(a) (2,5),4x + 3y-2=0. (e) (- 4, 1), 3^/ - 2 = 0.

(6) (-3, 7),5a; + 12?/+24=0. (/) (a, a), a: + ?/ - a = 0.

(c) (2, - 2), 3 a: - 4 y = 0. {g) (6, a),ax + by = Q.

{d) (5, 2),2x + 5 = 0. (Ji) (1,3), 2/ = 2 a; + 5.

4. Determine the region of the plane defined by each of the following

sets of relations,

(a) a; + 2 ?/ + 4 > 0, (&) 2 x - ?/ + 2 > 0, (c) 2 ic - 3 «/ + 6 > 0,

a;_2i/-6>0. ?/-2<0. 3a; + 2y-12<0,
x-y-l<0.

5. Define by inequalities (as in Ex. 4) the inside of the triangle

whose sides are given by the expressions in Ex. 4, (c) equated to zero.

6. Define by means of inequalities the inside of the triangle whose

vertices are (- 2, 5), (4, 1), (- 1, 1).

7. Find the distance between the two parallel lines 3x — 62/ + 5 =
and 3x- 6?/- 2 = 0.

8. Find the equation of the bisector of the acute angle between the

lines 2a; + 32/-4 = 0, x-2y + 7 = 0.
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9. Find the equation of the bisector of the obtuse angle between the

lines in Ex. 8.

10. Prove that the bisectors of the angles formed by the two lines

a\X + 6iy + Ci = and a2X 4- h^y + c^ = are perpendicular to each other.

11. Find the lengths of the altitudes of the triangle whose vertices are

(1,2), (-2,3), and (-3, -4).

12. Find the area of the triangle in Ex. 11 by multiplying half the

length of one of the sides by the corresponding altitude, and check the

result by finding the area by the formula of § 196.

13. Find the distance of the point (1, 2) from the line 3x + 4 ?/ + 12

= by finding the coordinates of the foot of the perpendicular dropped

from the point on the line and then using the formula for the distance

between two points. Check by means of § 203.

14. If the equations of two parallel lines are ax -\-hy + c z=Q and

ax 4- by -f c' := 0, prove that the distance between them is the absolute

value of (c — c')/y/a^ + h'^.

15. Prove that the bisectors of the angles of a triangle meet in a point.

[Hint : Choose a convenient relation between the triangle and the

axes. ]

16. Find the altitudes of the triangle formed by the lines

x+2?/-3 = 0, x-y = 0, 4a;-y-l = 0.

17. Prove that the altitudes on the legs of an isosceles triangle are

equal.

18. Prove that the three altitudes of an equilateral triangle are equal.

19. Prove that the sum of the absolute distances of any point within

an equilateral triangle from the sides of the triangle is constant.

204. Two Equations representing the same Line. If of

two equations of the first degree one can be obtained from the

other by multiplying the latter by a constant, the equations

obviously represent the same line, since all the points which

satisfy one equation must then satisfy the other also. We
now proceed to prove the converse of this statement

:

If the equations Ax + By + C = and A'x + B'y -{- C =
represent the same line, either one can he obtained from the other

by multiplication by a constant.
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Let us suppose first that none of the numbers A, A', B, B\

C, C is zero. The intercepts of the two lines on the ic-axis are

then - C/A and - C'/A', on the y-Sixis - C/B and - C'/B'.

Since the lines are by hypothesis identical, we have

A A' ^. B B'

From these relations follow at once

A _B^_C__.
A'~B~C'~ '

where A; is a constant. It follows that

A^kA', B = kB', C=kC\
If C (or C") is zero, the corresponding line passes through the

origin, and hence the other line must also pass through the

origin ; hence C" (or C) is also zero. We leave the rest of

the proof as an exercise, with the suggestion that the slopes

of the two lines be compared.

205. The Intercept Form. Hesse's Normal Form. We
have called attention thus far to three forms of the equation

of a straight line : (1) the general equation
; (2) the slope

form
; (3) the point-slope form. Two other forms are some-

times of great convenience. These are the so-called mtercept

form and normal form. The intercept form is

(11) 1+1='^' ^"^^^'^

where a and h represent, respectively, the x- and ^/-intercepts

of the line. This equation may be derived by finding the

equation of the line through the points (a, 0) and (0, h). The

derivation is left as an exercise. (See Ex. 21, p. 89.) This

form is not applicable if the straight line passes through the

origin, or if it is parallel to either axis. Why ?
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The normal form is associated with the name of Hesse,* who

used it extensively. It uses the length p of the perpendicular

droj^ped from the origin upon the line and the angle a which

this perpendicular makes with the a:-axis to determine the line.

To derive the equation when p and a are given, we try to

find a relation which is satisfied by the coordiDates (x, y) of

every point P on the line and which is

not satisfied by the coordinates of any

other point. To this end (Fig. 184) we

note that the projection of the broken

line OMP on the perpendicular OQ is

equal to p, if and only if P is on the

line. The projections of the parts OM
and MP on OQ are, respectively, x cos a and y sin a. The

desired equation is, therefore,

(12) X cos a + y sin a = ^
We shall take the positive direction of 0$, or p, from the origin

towards the line, and choose the positive angle XOQ to be a. It is then

evident that the position of any line is determined by a pair of values of

p and a, it being understood that p and a are positive and that a is less

than 360°.

Moreover every line determines a single positive value oi p and a single

positive angle a less than 360", unless p = 0. . When p = {) the line evi-

dently passes through the origin and the above rule for the positive

direction of p becomes meaningless. When p — 0, it is customary to

choose a < 180°.

To reduce the general equation Ax -{- By -\- C =0 to the

normal form, we need merely observe that in the latter form

an essential condition is that the coefficients of x and y are

numbers the sum of whose squares is 1, since sin' a -|- cos^ « = 1.

We must then multiply all the coefficients of Ax -{-By -^ C =
by a number k, so chosen that (kAy -^(kBy = 1. This condi-

LuDWiG Otto Hesse (1811-1874), a noted German mathematician.
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tion will be satisfied if
^

Therefore the desired reduction is obtained by dividing the

equation through by ± V^^ + B^, and transposing the constant

term to the right-hand side of the equation :

A B ^ - (7 _

The sign of the radical must be chosen opposite to the sign of

C, or if (7 = 0, the same as that of B. Why ?

One advantage of the normal form is that every Hne may have its equa-

tion written in the normal form. Whether the line passes through the

origin or is parallel to an axis is immaterial.

EXERCISES

1. Reduce the following equations to the normal form. Find in each

case the values of a and p.

(a) 4a; +8?/- 10 = 0. (d) 3x-2 y + 6 = 0.

(6) a;-!/ + 5=0. (e)y=2x-3.
(c) a; + VS ^ = 0. (/) a; = 2y - 5.

(gr) The equation of the line whose intercepts are — 5 and 2, respectively.

2. Reduce to the intercept form each of the lines in Ex. 1 for which

such reduction is possible.

3. What are the normal formsof the equations x =3,2 a:-f 3=0,^—1=0?
4. Derive the process of reducing the equation Ax + By -}- C = to the

normal form by using the fact (derived from § 203) that p =— Cj^JA^-\-&.

5. What system of lines is obtained from the normal form, if a has a

fixed value, while p is allowed to assume different values ? If p has a

fixed value and a is allowed to assume different values ?

6. Find the equations of the lines which pass through the point (1, 2)

and are two units distant from the origin.

7. Find the equations of the lines parallel to 5 x + 12 y = 13 and 3 units

distance from it.

8. Find the equations of the lines parallel to 3 x + 4 ?/ = 13 and 7

units distance from it.
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MISCELLANEOUS EXERCISES

1. Find the equation of the straight line passing through the point

(3, 4), such that the segment of the line between the axes is bisected at

that point.

2. Show that the lines y = ax -{ a, for all values of a, pass through

a fixed point,

3. Given aix + biy + ci = 0, aox + b2y + C2 = 0, agX + bsy + ca = 0,

the equations of three lines forming a triangle. Show that the equation

of any line Ax -^ By -^ C = in the plane may be written in the form

ki{aix + biy + Ci) + koia-zx + b2y + C2) + ks^asx + bsy + ^3)= 0,

where ki, k2, ks are constants.

4. Find the ratio in which the line Sy = 6 — x divides the segment

joining the pohits (6, 1) and (— ^>, 2).

5. Find the equation of the line that passes through the point (1, 7)

and makes an angle of 45° with the line x + 2 ?/ = 1.

6. Find the equation of the line that passes through the point (1, 7)

and makes an angle of — 45° with the line x + 2y = 1.

7. Prove analytically that the perpendicular bisectors of the sides of

a triangle meet in a point.

8. Prove analytically that the altitudes of a triangle meet in a point.

9. Prove analytically that the bisectors of the interior angles of a

triangle meet in a point.

10. Prove analytically that the bisectors of two exterior angles of a

triangle and of the third interior angle meet in a point.

11. Theequationsof two sides of a parallelogram are x— 2 i/=l, x+y=S.
Find the equations of the other two sides if one vertex is at (0, — 1).

12. Find the equation of the line passing through the point (1, 1) and

dividing the segment from (— 7, — 2) to (7, — 1) in the ratio 2:6.

13. Two vertices of an equilateral triangle are (1, 1) and (4, 1).

Find the coordinates of the third vertex. There are two solutions.

14. jdind the equation of the line passing through the point (1, 2) and

intersecting the line x -\- y = 4^ at a, distance ^VlO from this point.

15. Find the equation of the line through the point (1, 2) which forma

the base of an isosceles triangle with the sides 2x — y = 1, x -{- y = I.

16. A straight line moves so that the sum of the reciprocals of its

intercepts on the two axes is constant. Show that the line passes through

a fixed point.
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17. If a straight line be such that the sum of the perpendiculars upon

it from any number of fixed points is zero, show that it will pass through

a fixed point.

18. Find the equations of the sides of the square of which two opposite

vertices are (3, — 4) and (1, 1).

19. Derive the formula for the distance of a point (ici, ^i) from the

line-^x i- By + C = hy finding the intersection of the perpendicular

through the given point and the given line, and then using the formula for

the distance between two points.

20. Prove that if the sum of the first moments of n points with respect

to each of two given perpendicular lines is zero, the sum of the moments

of tliese points with respect to any line in the plane through the inter-

section of the given lines is zero. (See Ex. 19, p. 305.)

[Hint : Take the given perpendicular lines to be the axes of

coordinates. ]

21. If with the center of gravity of n points in a plane is associated

the sum of the weights of the n points, prove that the sum of the first

moments of the n points with respect to any line in the plane is equal to

the first moment of the center of gravity with respect to the same line.

22. Given two half-lines r, s issuing from a point P, a third half-line t

through P is completely determined if the ratio sin (r^)/sin (ts) = k is

known. The ratio k is called the simple ratio of t with respect to r, s.

Prove that the equations I = and m = of r and s, respectively, may be

so written that, for all positions of t, the equation ot t is I — km = 0.

23. Given two points Pi(xi, y{) and P'z(x2, yi) and a straight line

ax -\-hy + c = () which meets the line PiPi in Q. Find the simple ratio

[Hint : This can be obtained very readily from a figure by observing

the relation between the desired ratio and the ratio of the distances of

Pi, Pi from the given line.]

24. From the last exercise derive the theorem of Menelaus : If a

straight line cuts the sides of a triangle ABC in three points A\ B', C,

the product of simple ratios

AC BA> CB>

C'B ' A'C' B'A

is — 1. The point A' is on the side opposite A. B' on the side opposite JB,

O on the side opposite C.



CHAPTER XII

THE CIRCLE

206. Review. The circle is the locus of a point which moves

so that its distance from a fixed point, called the center, is con-

stant. This constant distance is called the radius of the circle.

If the center of a circle is at the point {h, k) and the radius

is r, the equation of the circle is

(1) {X - hy + (1/
- ft)2= r\

Tor, this equation expresses directly the fact that the square of

the distance from the given point (7i, k) to the variable point

{x, y) is r^. Hence, every point on the circle satisfies this

equation and, conversely, any point not on the circle does not

satisfy it.

In particular, if the center is at the origin (h = 0, k = 0), the

equation becomes

(2) x' + y''^ 7-2^

"We note also that equation (1) when expanded has the form

(3) x''-hy^ + Dx + Ey + C = 0.

It follows that every circle in the plane may be represented

by an equation of this form. To what extent is the converse

true? Under what conditions does an equation of the form

(3) represent a circle ? The answer to this question may be

obtained by reference to the method of § 183.

We desire to complete the square on the terms in x, and also on

the terms in y. Therefore we rewrite the equation in the form

ix^ + Dx-{- )-\.(y'^-^Ey+ ) = -C.
320
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To complete the squares in the two parentheses we need to add

i)Y4 to the first and J5jy4 to the second; to maintain the

validity of the equation we must add the same terms to the

right-hand member. We then obtain

or

(:H-f)V(..f)^=- +f--^.
Since the sum of the squares of two real numbers is positive or

zero, the left-hand member is positive or zero if x, y, D, E are real

numbers. Hence the equation can be satisfied by real coordi-

nates X, y only if L^ -\- E"^ — ^ C i^ di, positive number or zero.

If Z>2+^ — 4 C is positive, equation (3) represents a circle

with center at (— D/2, — E/2) and radius equal to

I -y/D^ + E^-4.a

If i)2_|_ ^2 _ 4 (7 ig zero, equation (3) is satisfied by the coor-

dinates of the point (— -0/2, — E/2) and by the coordinates of

no other (real) point.

If Z)2 4- ^2 _ 4 (7 is negative, equation (3) represents no real

locus. The answer to our question may then be formulated as

follows : If (3) represents a curve at all, it represents a circle.

207. The Equation of a Circle satisfying given Conditions.

The problem of finding the equation of a circle satisfying

given conditions resolves itself simply into the problem of

determining from the given conditions the values of U, Jc, r in

equation (1), or of D, E, C in equation (3) of § 206. The fol-

lowing examples will illustrate the methods that may be used

:

Example 1. Find the equation of the circle passing through the three

points (3, — 5), (3, 1), and (4, 0).

The desired equation must be of the form (8), and must be satisfied by

Y



322 MATHEMATICAL ANALYSIS [XII, § 207

the coordinates of each of the three given points. If the first point satis-

fies this equation, D, E, and C must be such that

32 +(- 5)-^ + i> • 3 + E(-6)+ C=0,
i.e. such that

SD-6E+ C=-S4.

We find similarly from the second and third of the given points,

3i> + ^+O = -10,
4j[> + C=-16.

Solving these three linear equations for Z>, U, C, we obtain

Z)=-2, E = 4, C = -S.

The desired equation is, therefore,

x2 -J- ^2 _ 2 ic + 4 2/ - 8 = 0.

Another method of solving this problem would be to regard (A, A) as

unknown coordinates of the center. They must satisfy the two equations

(3 _ A)2 + (_ 5 _ i.)2 =(3 _ hy +(1 _ j^y2^

(4-/i)2+(0- A:)2=(3-/02+(l-^)2. (Why?)

By solving these equations we can determine h and k. Having found the

center, it is easy to determine the radius. Then the desired equation can

be written down in form (1). The completion of the work here sug-

gested is left as an exercise. What other method could be used to solve

this problem ?

Example 2. Find the equation of the

circle inscribed in the triangle ichose sides

are y-S=0, 3x— 4?/—9=0, and 12x+5y
+ 9 = 0.

Let (h, k) be the center of the circle. It

must be equidistant from the three sides.

The distances of (A, k) from the three given

lines are — (A: — 3), -
^ (3 A — 4 A: — 9), and

ji^(12
ft + 5 ^• + 9), the signs being so chosen

that each of these numbers is positive when
(ft, k) is within the triangle. (See Fig. 185.)

By placing the first of these distances equal to tlie second and third, re-

spectively, we obtain two equations involving ft and k. The solution of

these two equations yields ft = 1, k — \. Hence the center is the point

(1, 1). The radius is evidently equal to 2. Why? Therefore the

required equation is

(a; - 1)2 +(2/ - 1)2 = 4, or a;2 + y2 _ 2x - 2t/ - 2 = 0.

" X "

--Y-
^

zzzzzY~.y-.-.iz

HrnTNMTffl
:i=::;z^ii=:=i:
:: zt ::v= : ::

Fig. 185
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EXERCISES

1. Write the equations of the circles described below:

(a) Center at the origin, radius equal to 5.

(6) Center at (1, 2), radius = 4.

(c) Center at (- 3, — 2), radius = 3.

(d) Center at (a, a) and radius = a.

(e) Center at (—2, 1) and passing through the point (3, — 2).

(/) Center at (2, 1) and tangent to the x-axis.

2. Discuss fully the locus of each of the following equations

:

(a) x-^ + y^ - 2 X + 4:y -{- I = 0. {d) x'^+ y"^
-\- \ =0.

(b) x^ + y^ -ix- 6y = 0. (e) x^ + y^ -\-2x- 6y + 10 = 0.

(c) x^ -\-y^ + Sx-i = 0. (/) x2 4- 2/2 + 2 aa; + 2 a2 = 0.

(g) Sx^ + Sy^-\-2x-iy-8=0.

3. What can be said of the coefficients Z>, E, and C in the general

equation if the equation represents a circle which

(a) passes through the origin ?

(6) has its center on the x-axis ? on the y-axis ?

(c) has its center on the line x -\-y = 0?
(d) touches both axes ?

(e) has its radius equal to 2 ?

4. Find the equations of the circles described below :

(a) Passing through the points (0, 2), (1, 4), (1, 0).

(6) Circumscribing the triangle whose sides are the lines «+ y — 3=0,
x-2y + Q = 0, x + 2 = 0.

(c) Inscribed in the triangle whose vertices are (0, 2), (0, — 4), and

(-4,1).
(d) Having ( — 2, 4) and (4, — 2) as the extremities of a diameter.

(e) Passing through the points (1, 2) and (2, ]) and having its center

on the line 2x + y + 2 = 0.

(/) Tangent to both coordinate axes and passing through the point

(2, 1). How many solutions are there ?

5. Prove analytically that any angle inscribed in a semicircle is a

right angle.

6. Prove that the locus of a point which moves so that the sum of

the squares of its distances from any number of fixed points is constant

is a circle. Find the coordinates of the center of this circle in terms

of the coordinates of the fixed points. If the number of fixed points is

three, how is the center of the circle related to the triangle whose ver-

tices are at the fixed points ?
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7. Find the equation of the locus of a point which moves so that the

ratio of its distances from two fixed points is constant and equal to k.

Determine fully this locus. Examine especially the case k=\.

[Hint : Let the two fixed points be (a, 0) and (— a, 0)].

8. Draw the loci of Ex. 7 for different values of k. Prove that if

any one of these loci crosses the line joining the two given points in P and

Q^ respectively, and the raid-point of the segment joining the given points

is M, we have MP • MQ equal to the square of half the segment.

208. Tangent to a Circle. Point Form. In § 184 we saw

how the slope of the curve Ax^ -f- Bi/ + Dx -\- JEy -{- C = at

any point {xi, y-^ on the curve could be derived. Applying

this method to the circle

x'^j^if^Dx-\-Ey+ C = 0,

we find the slope m at {x^, y-^ on the curve to be

2xy^ + D
2y,-\-E

The equation of the tangent at the point {xi , y^ is, therefore,

Simplifying, we obtain

(4) 2x]X-\-2 y^y ^Dx-\-Ey -2 x^^ — 2y{'— Dx^ — Eyi = 0.

But {xif z/i) is on the curve, and hence

Xi'-hyi' + Dx, + Ey,-\-C=0.

If this identity be multiplied by 2 and added to (4) we obtain

2x,x + 2y,y J^Dx-^Ey + Dx, -j- Ey^ + C = 0,

or

(5) x,x + y,y + 1 D{x + x,)-^l E{y + y{)-\-C=.0,

As a special case of this equation (for D = 0, E = 0, C=
— r^) we obtain the equation of the tangent to the circle

x"^ -\- y^= 9-2 at the point (xi, y^) to be

(6) x,x + y,y = r\
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209. Tangent to a Circle. Slope Form. Another form of

the equation of a tangent to the circle x^ -\- y"^ = r^ is often very

serviceable. It is derived as follows. The straight line

y = mx -\- h meets the circle x"^ -\- y"^ = r^ in points whose

abscissas are given by the equation

a;2 -I- {mx + hf = r».

When expanded this equation becomes

(1 + m2)a;2 -^2mhx -\-
h"^ - r'^ = 0.

The roots of this equation will be real and distinct, real and

coincident, or imaginary, according as

is positive, zero, or negative.

Translated into geometric terms, this means that the line

y = mx + h will meet the circle in two distinct points, two

coincident points, or not at all, according as the expression

above is positive, zero, or negative. If the line meets the

circle in two coincident points, the line is a tangent. The

condition
^ ^^^^ - 4(1 + m?) {¥ - r^)=

yields, after simplification,

or, b = ± rVl + m\

Hence, for all values ofm the equation

(7) y = mx ± rVI + m^

represents a tangent to the circle ^ -\-y'^ — r^.

It follows at once that for all values ofm the equation

y-k= m(x -h)± rVI + m^

represents a tangent to the circle (x — hY-\-{y — ky = r^.
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EXERCISES

1. Write the equations of the tangents to the following circles at the

points indicated

:

(a) a;2 + ?/2 = 25, at (3, -4).

(&) a;2 + y2 = 6, at(-l, 2).

(c) a;2 + ?/2 = 4, at (0, 2).

(d) jc2 + y2 _ 13^ at the points where x = 3.

(e) a;2 4- ?/2 = 10, at the points where y = 1.

(/) a;2 + 2/2 + 2 a: - 4 y = 0, at (1, 1).

2. Derive the equation of the tangent to the circle (x — h)^ + (y — k)^

= r2 at the point (xi, yi) by making use of the fact that the tangent is

perpendicular to the radius through the point of contact.

3. Find the intersections of the following circles with the lines in-

dicated :

(a) x2-|-y2_ 5andy = 3a;-|-5. (c) ic2+?/2=:i3and3 a:+2 y-13=0.

(6) x2 + r/2 = 25 andx - 2 !/ - 5 =0. (c?) x^ + 2/2 = 10 and y = 3 x + 10.

(e) x2 -f ?/2 = 4, and y=-2x + 4, ?/ = -2x + 2 a/5, y = — 2 x + 5.

Draw a careful figure showing the circle and the three lines.

4. Write the equations of the tangents to the following circles, the

slopes of the tangents being as indicated. Find the points of contact.

(a) x2 + 1/2 = 10, slope = - 3. {d) x2 + 2/2 ^ 25, slope = 0.

(6)x2 + 2/2 = 5, slope = ^. (c) (x-l)2+(2/+2)2=10,slope=3.

(c) x2 + 2/2 = 13, slope = |.

5. Will the equation y = mx ± rVl + m2 represent any tangent to the

circle x2 + 2/2 = r2. Why ?

6. What is the point of contact of the tangent 2/ = wix + rVl + w2
to the circle x2 + y- — r^'i From this result derive the equation

a^ia: + y\y = r2.

7. Any circle through the origin has an equation of the form
x^+y^+Dx-{-Ey=0. Why? Prove that the equation of the tangent at

the origin is Dx-^Ey=0. This may be done in at least two different ways.

8. Prove analytically that from an external point two real tangents

can be drawn to a circle.

9. Derive the equation y = mx±r\/l -\- m^ directly from the property

that a tangent to a circle is perpendicular to the radius through the point

of contact.
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210. The Value and Sign of the Expression x^+ y^ + Dx^

+ Eyi + C. The left-hand member of the standard equation

(x — hy +{y — ky = r^ represents the square of the distance

from the point (x, y) to the point (h, k). Hence the expression

(8) (^x^-hy+{y,-ky-r^

is positive, negative, or zero according as (xi, y{) is outside, in-

side, or on the circle whose equation is (x — hy -\-{y — ky = r^.

Moreover, from Fig. 186 it follows that if (xi, 2/1) is a point

outside the circle, the expression (8)

is equal to the square of the length
^

^{x^,Vj)

of a tangent drawn from the point

(^'d 2/1) to t^® circle. Since the left-

hand member of the general equation

x^ -\-
y"^

-\- Dx -{- Ey -\- C= may be writ-

ten in the form (x — hy -\- {y — ky — r^

we may conclude that the sign of the
-^ ^ Fig. 186

expression x^ -\- y^ + Dx^ -f- Ey^ + (7 is

positive or negative according as the point (x^, y^ is outside or

inside the circle x'^-{- y"^ -\- Dx -\- Ey -f C= ; and, if positive, it

represents the square of the length of a tangent drawn from the

point (xi, y{) to the circle.

211. The Equations of the Tangents from an External

Point. Suppose we desire to find the equations of the tan-

gents drawn from an external point {xi, yi) to the circle

a;2 -f- 2/2 _ ^2^ Three methods will be discussed:

Example, Find the equations of the tangents drawn from the point

(4, - 3) to the circle x^ + y^ = 5.

Method 1. Let {xi, y{) be the point of contact of one of the tangents.

The equation of the tangent at this point is XiX -\- yiy = 6- However,

since this tangent passes through the point (4, — 3) we have

(9) 4 xi - 3 yi = 6.
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But the point (cci, yi) is on the circle x^ -}- y2 _ 5^ Therefore '

(10) xi^ + yi'' = 5.

Solving equations (9) and (10), we find the points of contact to be (2, 1)

and ( — 2/5, — 11/5). Therefore the required tangents are2ic + y— 5 =
and2a; + lly + 25 = 0.

Method 2. From § 209 it follows that any tangent (not parallel to

the ?/-axis) to the circle x^ -\- y^ = 6 is of the form y = mx ± VsVl + m^.

Since this tangent is to pass through the point (4, — 3) we have

— 3 = 4 m ± VoV 1 -j- W'^5

which simplifies to 11 m- + 24 m + 4 = ; th is gives m =— 2, or — 2/11.

Substituting these values in y — mx ± VSVl + m^ and simplifying we
have 2x + ?/-5 = and 2 x + 11 y + 25 = 0.

Method 3. The equation of any line through the point (4, — 3) is of

the form ?/ + 3 = m(x — 4). Eliminating y between this equation and

x2 + y2 — 5 ^e have

(11) (wi2 + l)x2+ x(-8m2-6m) + (16m2 + 24m + 4)=0.

Now since we desire y + 3 = w(:k — 4) to be tangent, equation (11) must

have equal roots, i.e. (- 8 m2 - 6 m)2 _ 4(m2 + 1) (16 m2 + 24 m + 4) =
or 11 m2 + 24 m + 4 = which gives m=— 2, or —2/11. Therefore

the equations of the tangents are 2x + ?/ — 5 = and 2x+lly+25 = 0.

212. The Polar of a Point with respect to a Circle. Let

us apply the first method of § 211 for finding the equations of

the tangents from an external point to a circle, to the general

problem of finding the equations of the tangent from the point

(xi, 2/1) to the circle x^ -\-
if-
= r^. The coordinates {x\ y') of the

point of contact are then found by solving simultaneously the

pair of equations x'x^ + y'yi = r^, x'^ -f-
y'^ = r\ The first equa-

tion expresses the fact that the point (xi, y^ is on the tangent

x^x -{- y'y = r"^
',
the second, that {x\ 2/') is on the circle.

This shows that the straight line XiX + yiy = r^, where (xi, y{)

is any external point, meets the circle in the points of contact

of the tangents drawn from {xi, y-^. In other words,

(12) iCiic + ;viy = 7-2

is the equation of the line joining the points of contact of the
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tangents through (xi, 2/1), if the latter point is outside the circle.

If this point is on the circle, we know that (12) is the equation

of the tangent at the given point. Finally, if (xi, y-^ is inside

the circle, (12) represents a definite straight line determined

by the point and the circle. This straight line (12), whether

(^1) 2/1) is outside, on, or inside the circle, is called the polar of

Fig. 187

(s^ij 2/1) with respect to the circle. The polar of (a^i, y^ with

respect to a circle is then a uniquely determined line for every

point (aji, 2/1) in the plane, except the center of the circle.

(See Fig. 187.) Why this exception ?

EXERCISES

1. Are the following points inside, outside, or on the circle x^ + y^

-2x + 6y-15=.0? (1,2), (1,0), (1,4), (-3,0), (3,0), (0,2),

(5, 1). For the points outside, find the length of the tangents drawn to

the circle. Draw carefully a figure to illustrate each of your results.

2. What is the length of the tangents drawn from (1, 1) to the circle

whose equation m 2 r^ -\- '2,
y'^ -{- ^ x — b y — \ = Q?

[Caution : The equation is not in the standard form.]

3. Find the equations of the tangents drawn from the following points

to the circle indicated :

(a) (- 2, 4) ; a;2 + y2 = 10. (d) (3, 2) • x'^ + y^ = 4.

(6) (5, _ 1) ; x2 + y2 = 13. (e) (4, 3) ; x2 + y2 = 16.

(c) (3, - 1) ; x2 + 2,2= 2. (/) (7, 1) ; x2 + 2,2 ,, 25.

4. Find the equations of the tangents drawn from (0, 4) to the circle

aj2 + y2 _ 2a; + 6y-15 = 0.

6. Show that the polar of a point P with respect to a circle is per-

pendicular to the radius or radius extended through the point P.
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6. Show that if P is inside the circle, the polar of P is wholly outside

the circle.

7. Show that if the polar of P with respect to a circle whose center is

cuts the line OP in Q, then OP • OQ=r^, where r is the radius of the circle.

[Hint : Let the center O be the origin and the line OP the x-axis.]

8. Show that if the polar of a point with respect to a given circle is

given, the point is uniquely determined.

[Hint : This follows directly from the results of Exs. 5 and 7 ; or it

may be proved directly by identifying the given polar ax-\-by + c =
with the equation Xix + y\y = r^. In the latter case we should have

Xi/a = pi/b = — r^/c, which determines xi, yi uniquely.]

9. A straight line is drawn through a given point P, cutting a given

circle in the points A and B. Calculate the length of the segments PA
and PB. Let P be chosen as origin and the line through P and the

center of the circle as ic-axis. The equation of the circle is then x^ + y'^

4- Dx 4- C = 0. If p is one of the segments PA or PB and « is the

angle which PA makes with the x-axis, the coordinates of J. or P are

{p cos a, p sin a). Since this point is on the circle we have the equation

(/) cos a)2 + {p sin ay + !>/) cos « + O =

for determining the two values of p. This equation reduces to

p2 -f Z) cos a . /) + = 0.

It may be noted that the product of the roots pip^ of this equation is C,

i.e. independent of a. What theorem of elementary geometry does this"

prove ? Prove also that the product PA • PB is positive or negative

according as P is outside or inside the circle.

213. The Intersection of Two Circles. Given two circles

0^2 -f 2/2 4- D.a: + ^i2/ 4- Ci = 0,

and ic2 4- 2/2 + D.p: + E^ + 0^= 0.

The coordinates of the points of intersection are found by

solving the equations simultaneously. Subtracting the equa-

tions, we have

(A-A)a5+(^i-^2)2/ + c,-a = o.

Every point common to the two circles will satisfy this last

equation, which is the equation of a straight line. Therefore

the problem of finding the points of intersection of two circles
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is equivalent algebraically to that of finding the intersections of

a straight line and a circle. This problem leads essentially to

the solution of a quadratic equation in one unknown. There-

fore we may conclude that two circles may intersect in two

distinct points (two real roots), may be tangent to each other

(coincident roots), or may not intersect at all (imaginary roots).*

214. Orthogonal Circles. Two circles which intersect at

right angles are said to be orthogonal. In this case the tan-

gents to the two circles at a point of

intersection must be perpendicular, and

the two tangents pass respectively through

the centers of the circles (Fig. 188). The

condition for orthogonality is then simply

that the sum of the squares of the radii _ .„^
Fig. 188

of the circles shall be equal to the square

of the distance between their centers. If the centers are

(7i(7ii, ^i) and €2(712, k^ and the radii are Vi and r^ respectively,

the condition for orthogonality is

If the equations of the circles are

,. ox
^'

+

y' + ^^^ + ^^y + c'l = o»

^ ^ x^ + y'^ + D,x + Eiy+C2 = 0,

this condition becomes (see § 206)

4 4 4 "^ 4 '

which when simplified gives

AA + A^2 - 2(Ci + C2)= 0.

* The reasoning above breaks down, if Z)i - 2)2 = and Ei — E2 = 0, that is

when the circles are concentric. In this case, unless C\ —0^ = also (in which

case the two circles coincide), the two equations are inconsistent and have no

common solution, real or imaginary.



332 MATHEMATICAL ANALYSIS [XII, § 215

215. Pencil of Circles. Let the left-hand members of the

equations (13), § 214, be represented by Mi and Mz respectively.

Let us consider the locus of the equation

(14) Mi-kM2 = 0,

where k is an arbitrary constant. This equation may, iik^l,

be written in the form

(16) x^+ 2,^ + -L3^^» + -L_^^2/+-Y-r = 0.

which represents a circle for each value of k{=^l). When
k = l, equation (14) represents the straight line

(16) (Z>i - D,)x + {El - E,)y + Ci - C^ = 0.

The system of circles obtained by giving different values to

A;, is called the pencil of circles determined by the two given

circles. The straight line (16) is called the radical axis of

the two given circles, and of the pencil.

The following properties of a pencil of circles are readily

proved

:

If the tivo gwen circles intersect in two points A and B, every

circle of the pencil passes through A and B.

If the two given circles are tangent to each other at a point Ay

all the circles of the pencil are tangent at A.

Tftrough any point in the plane not on the radical axis of the

circles passes one and only one circle of the pencil. The proofs of

these theorems are left as exercises.

Further properties of pencils of circles will be found in the

following exercises.

EXERCISES

1. Find the coordinates of the points of intersection of the following

pairs of circles :

(o) x2 + y2 ^ 5 and a;2 + y2 ^ 2 X - 4 2/ + 1 = 0.

(6) x2 + y2 _ a; _|. 2
J/
= and x^ + y2 4. 2 x — 4 y = 0.

(c) x2 + y2 4. 2 X - 17 = and x2 + t/2 _ 13 _ q.
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2. Write the equation of the radical axis of each pair of circles given

in Ex. 1.

3. Prove that the tangents drawn from any point of the radical axis

of two circles to the two circles are equal.

4. Prove that the circles x^-{-y'^-\-6x — 2y + 2 = and x'^ +y'^ + 4y
+ 2 = are tangent to each other. Find their point of contact and the

equation of their common tangent.

5. Find the equation of the circle through the intersections of the

circles x^+y^ — 4x — 4 = and x^ + y^+2x — Qy — 2 = and the point

(3, 3). [It is not necessary to find the intersections.]

6. Prove that the following circles are orthogonal: x^-\-y^ —2x—4=0
and x^+y'^—Q ?/+4=0. In general for the circles : x^ -\-

y'^ -\- Dx — C =
and x^ + y"^ + Ey + C = 0.

7. Determine C so that x^ + y^ — 2x + 4:y — S = and x^ -\-y^ -\-2x

+ (7 = are orthogonal.

8. Prove that the locus of the centers of the circles of a pencil is a

straight line perpendicular to the radical axis of the pencil.

9. Prove that if the radical axis of a pencil of circles is chosen as the

y-axis and the line of centers as the ic-axis, the equation of any circle of

the pencil is of the form x^ + y'^ + kx -\- C = 0, where C is the same for all

circles of the pencil ; and that all circles obtained by varying k in this

equation are circles of the same pencil.

10. The circles of the pencil in Ex. 9 intersect in distinct points, are

tangent to each other, or do not intersect at all, according as C is negative,

zero, or positive. In case (7 = 0, all the circles of the pencil are tangent

to one another at the origin. Draw carefully three figures, illustrating

the three kinds kinds of pencils here indicated.

11. Find the equation of a circle wbich is orthogonal to two given

circles of the pencil in Ex. 9.

[Hint : Let the two given circles be

x"^ + y^ + kix + C=0 and x^ +y^ + kix + C = 0,

and let the required circle be x"^ + y'^ + D^x + E^y + (^2 = 0. If this circle

is to be orthogonal to each of the given circles we must have (§ 214)

B^kx - 2((7 + (72) = and D^iki - 2(0 + (^2) = 0.

These equations give 2)2 = and d^-C. Hence the required equation

is x2+y2_|_^2?/— C=0. This yields two remarkable results : (1) The coeflB-

cient E2 is undetermined, and by varying E^ we have a pencil of circles

each of which satisfies the condition of being orthogonal to the two given
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circles. (2) The equation found is independent of An, and k2- Hence,

every circle of the pencil just found is orthogonal to each of the circles of

the given pencil. Writing I for E2 to obtain uniformity of notation, wre

have found two pencils of circles :

and

x2 + 2/2 4- A:x + O =
«2 + 2/2 + ;y _ o = 0,

such that every circle of either pencil is orthogonal to each circle of the

other pencil. These two pencils of circles are said to form an orthogonal

system. (See the adjacent figure.)]

12. In an orthogonal system of circles, the centers of the circles of one

pencil are on the radical axis of the other pencil.

13. If the circles of one pencil of an orthogonal system intersect in two
distinct points A and J5, the circles of the other system do not intersect at

all, but pass between the points A and B.

14. If the circles of one pencil of an orthogonal system are mutually

tangent to each other at a point A, the circles of the other pencil are also

mutually tangent at A.

15. Prove that the three radical axes of three circles (not belonging to

the same pencil) taken two by two intersect in a point. This point is

called the radical center. Show that it is the center of a circle orthogonal

to each of the three given circles and that the tangents drawn from it to

the given circles are equal.
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MISCELLANEOUS EXERCISES

1. Find the condition that ax -{- by -\- c = be tangent to the circle

«2 + y2 _ r2.

2. Find the equation of the circle passing through the points (0, 0),

(a, 0), and (0, &).

3. Show that the equation of the circle having the points (a^i, yi) and

(^2, 2^2) as the extremities of a diameter is (x— Xi)(x — a^a) + (.V
— Vi)

(y - 2/2) = 0.

[Hint : The circle is the locus of the vertex of a right angle whose

sides pass through the given points. ]

4. Find the equation of a circle w^hich is tangent to the lines a; = 0,

y = 0, and ax + by -\- c = 0.

5. A line is drav^^n through each of the points (a, 0) and (—a, 0),

the two lines forming a constant angle d. Find the equation of the

locus of their point of intersection.

6. A straight line moves so that the sum of the perpendiculars drawn

to it from two fixed points is constant. Show that it is always tangent to

a fixed circle.

7. Give a geometrical construction for the polar of a point with

respect to a circle.

8. If the polar of a point P passes through Q, then the polar of Q
passes through P.

9. Find the equations of the common tangents of the circles x^+y^=S
and x2 + ?/2 _ 10 ic + 20 = 0.

10. Find the locus of a point which moves so that the length of a tan-

gent drawn from it to one given circle is k times the length of a tangent

drawn from it to another given circle.

11. Find the equation of a circle through the points of intersection of

3:2 +2/2 _ 4 and x^-\-y^—2x-\-4:y+4:=0 and tangent to the line x—2y=0.

12. Show that the polars of a given point P with respect to the circles

of a pencil pass through a fixed point, unless P is on the line of centers.

13. A point moves so that the sum of the squares of its distances from

the sides of a given square is constant. Show that its locus is a circle.

14. A point P moves so that its distance from a fixed point A is always

equal to k times its distance from another fixed point B. Show that its

locus is a circle, if k =^1. Show also that for different values of k

these circles have a common radical axis.
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16. A line rotating about a fixed point meets a fixed line in a point

P. Find the locus of a point Q on OP such that OP • OQ is constant.

16. Prove that among the circles of a pencil there are at most two which

are tangent to a given straight line (unless all the circles are tangent to

the line) . When is there only one ? None ?

[Hint : Let the given line be the sc-axis.]

17. Inversion with Respect to a Circle. Given a circle with center

and radius r. Corresponding to any point P in the plane (distinct from 0)

there exists a unique point P' on OP such that OP • OP' = r^. The
point P' is called the inverse of P with respect to the given circle. Prove

the following propositions

:

(a) If P' is the inverse of P, P is the inverse of P'.

(b) If P is inside the given circle, P' is outside ; and vice versa.

(c) Every point on the given circle corresponds to itself.

(d) If the coordinates of P and its inverse P' are (x, y) and (x', y')

respectively, referred to two rectangular axes through 0, we have

x'=-J^, y' = -'^; and x= ^^^'
, y= ^^^^

•

(e) If a point P describes a curve, the inverse P' describes a curve

called the inverse of the former curve. The inverse of any straight line

through is this line itself.

(/ ) The inverse of any line not through is a circle through O, and

the inverses of parallel lines are circles tangent at 0.

(g) The inverse of any circle is a circle, unless the given circle passes

through 0, in which case its inverse is a straight line.

(h) Two orthogonal circles or lines have orthogonal inverses,

(i) Any circle orthogonal to the given circle is its own inverse.

(j) The adjoining figure illustrates a

simple mechanism for changing circular

motion into rectilinear motion. It is known
as the inversor of Peaucellier. The heavy

lines represent rigid bars, hinged at their

extremities. The sides of the quadrilateral

ABCD are all equal and OB - 0D= p.

Prove that if O.is fixed and the mechanism

is allowed to move in any way it can, C is

always the inverse of A with respect to a circle with center O and radius

r = \JP--p^, where I is the side of the rhombus ABCD. Hence, if A de-

scribes a circle through 0, G will describe a straight line.



CHAPTER XIII

THE CONIC SECTIONS

216. Definition of a Conic. A conic section* or simply a

conic is defined as the locus of a point which moves so that its

distance from a fixed point, Fi, is always equal to a given

constant, e, times its distance from a fixed line D^D^^.

The fixed point F^ is called the focus. The fixed straight

line AA' is called the directrix. The constant e is called the

eccentricity. It is assumed that e > and that F^ does not

lie on AA'.

If P (Fig. 189) is any point on the curve, we have, by

the preceding definition,

(1) F,P = e' MP,

where MP is the perpendicular distance of P from the

directrix. It must be remembered that F^P and MP are

absolute quantities, not directed quantities, and that e is

positive.

The name "conic section " is due to the fact that the curves in question

were originally obtained as the sections of a right circular cone. They

were discussed from this point of view by the ancient Greeks.

z 337
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217. The Equation of a Conic. Let the directrix be chosen

as the 2/-axis and the line through Fi perpendicular to the

Y directrix as the aj-axis (Fig. 190). The coordi-

nates of Fi may then be taken as (|), 0),

y
*' where p is different from zero. Let P (a;, y)

be any point on the conic. Then

A'

P F^P.o)X

F,P= ^{x-py + y%

Fig. 190
^^^ ^^= + a; or - a;

according as x is positive or negative. Equation (1), § 216

then becomes
V(a;-i))2 + 2/2 = ±ea;.

Squaring both sides of this equation and simplifying, we have

(2) (1 - e2)a;2 + 3/^ - 2px-{-p'^ = 0.

This is the equation of the conic. For, the coordinates of

every point {x, y) satisfying the definition of the conic will

satisfy equation (2), and conversely, every point whose coor-

dinates satisfy equation (2) will satisfy equation (1). Why ?

This is an equation of the type considered in § 183. It

represents an ellipse if 1 — e^ > 0, a hyperbola if 1 — e' < 0,

and a parabola if 1 — e'^ = 0. Hence we have,

A conic is an ellipse, a parabola, or a hyperbola according as

the eccentricity e is less than 1, equal to 1, or greater than 1.

THE ELLIPSE

218. Standard Equation of the Ellipse : e < 1. We have

seen in § 183 how to determine the locus of equation (2)

by completing the square. If we apply the same method

here, equation (2) may be written in the form

(3)
(1-e^--
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or

(4) X — P T
,

2/' _ pH^
ri _ p2\ ' 1 _ p2 ^1 — ^2\2

339

Since 1 — e^ is positive by hypothesis this equation represents

an ellipse whose center is at the point {p/{l — e^), 0), and

whose axes coincide with the two y\

straight lines x = p/(l — e^) and y =
(Fig. 191).

Let us move the curve parallel

to the a;-axis through a distance

-p/(l - e2), i.e. to the left if p > 0.

Then its center comes to the origin,

and its equation becomes Fig. 191

(5)

or

(6)

x^ +
p^e2p2

1-e^

y2

(1 - e^y

p^e^ p2^2
= 1.

If we place

(1 - e2)2 1

(7)
(1-62)2

= «-,
j9%2 = 6S

the equation of the ellipse in its new position, i.e. with its

center at the origin (Fig. 192), becomes

Fig. 192

(I.)
a2 &2

From (7) we have

(8) 62=^2(1-62),

which shows that b <a, since e < 1.

If the ellipse is given in the form

(IJ, a and b are known. Then the
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value of e can be found in terms of a and b bysolving equation

(8) ; this gives

(9) e^ =^^A^

219. Properties of the Ellipse. It is important to distin-

guish between the properties of a curve as such and those

properties which are concerned merely with the relations the

curve bears to the coordinate axes. Thus the ellipse, as a

certain kind of curve, is symmetrical with respect to two

perpendicular lines called the axes of the curve. The longer

of the segments on these lines cut off by the curve is called

the majon axis, the shorter one, the minor axis. The inter-

section of the two axes of the curve is called the center of

the ellipse.

Every ellipse, no matter how it is situated in the plane

of coordinates, has a major axis and a minor axis as well as a

center. From the way in which the equation was derived, we

know also that every ellipse has a focus and a directrix. The

symmetry of the curve with respect to the y-'dxis shows that

this same curve could have been obtained from a second focus

F2 and a second directrix D2D2 on the opposite side of the

center.

We shall now investigate how the two foci and the two

directrices are related to the major axis, the minor axis, and

the center.

220. Foci and Directrices. The original position of the

focus Fi was (p, 0) ; the abscissa of its new position is

^ 1 _ e2 1 _ e2

Since from (7) we know that pe/{l — e^) = a, we find the

coordinates of the focus F^ in the new position to be ( — ae, 0).
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(See Fig. 193.) Similarly the equation of the directrix AA'
in its new position is

X = P

or

(10)
__a

e

The second focus F2 has the

coordinates (ae, 0). The second

directrix D2D2 has the equation FiQ. 193

(10')
aX=~'
e

221. The Ellipse in Other Positions. If the center of

the ellipse is at the origin and the major axis is on the y-axis,

the equation of the ellipse is

(I.)
62 ^ a2 '

where, as before, 2 a is the length of the major axis and 2 6 is

the length of the minor axis. The foci of this curve are at the

points (0, ae), (0, — ae) ; the equations of the directrices are

2/ = ± «A-

The equation of an ellipse whose center is at the point

(h, k) and whose axes are parallel to the coodinate axes is

(II.) (£^+(1^=1, (a>6)

or

(II„) .(l^ + (L=^^i, (a>b)

according as the major axis is parallel to the a>-axis or to the

y-Sixis. Finally we can reduce an equation of the form

(III) Ax^-hBy^ + Dx-^Ey+C^^O, A>0,B>0,

to the form II_, or 11^^, if it has a real locus. (See § 183.)
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222. The Case a = b. The Circle. If a = b the equation

(Ij.) reduces to the equation of a circle. The relation a=b
implies, however, that e = and this value of e is excluded in

the definition of a conic. On the other hand it is clear that

for a given value of a, as the eccentricity approaches zero, the

ellipse approaches a circle. At the same time, the foci ap-

proach the center, and the directrices recede indefinitely.

Why ? Since the circle is a limiting form of an ellipse it is

classified as an ellipse with equal axes and is counted among

the conies.

223. A Geometric Property of an Ellipse. An important

geometric property of any ellipse follows from the fact that

the distance from the center to either focus, which we shall

denote by c, is given by the relation

or

(11)

c=:ae=V a^ ^S

This relation shows that c, a, and h are the sides of a right-

angled triangle in which a is the hypotenuse (Fig. 194). In

other words, a circle drawn with its center

at an extremity of the minor axis and with

its 7'adius equal to a, will cut the major axis

in the foci, Fi and F2.

In computing the elements of an

ellipse from a and b, it is generally con-

venient first to find c from (11) and then

to find e from the relation*

(12) e = £

* This relation is equivalent to (9), § 218. It may be expressed by saying

that e is the cosine of the angle CF^B, Fig. 194.
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The extremities of the major axis are called the vertices of

the ellipse.

The chord through a focus perpendicular to the major axis

is called a latus rectum. Its length is 2 b^/a. Why ?

_

^ ^ -'^=

W'' _ ^ s
_, 5^^

I ^ Z .5
•3,22 * ^ 2 no)

. _C:fi|Q) . J^Q) JC

S (^
^^=, --=^

rZi ^

±_ » :

Fig. 195

224. Illustrative Examples. Example l. Given the ellipse

4a;2 + 9y2_36 = 0.

Find the coordinates of the center, the vertices, the foci, and the equa-

tions^ of the directrices.

The given equation may be written in

the form

9 4

from which follows that a = 3, 6 = 2.

Therefore c = Va^ — b^ = \/5 and e = V5/3.

The coordinates of the center are (0, 0),

the vertices (3, 0) and (—3, 0), the foci

(— V5, 0) and ( VS, 0) and the equations of

the directrices are x = — 9/V5 and x = 9/ VS
(Fig. 195).

Example 2. Find the coordinates of the center, the vertices, the foci,

and the equations of the directrices of the ellipse

25 x* + 9 2/2 - 50 x+S6y - 164 = 0.

From § 183, we know that the given equa-

tion may be written in the form

25(x - 1)2 + 9(?/-f 2)2=225,

or

(x-1)^
,

(y+2)2 ^.^
9 25

We now conclude that the center is at

(1, — 2), and that the major axis is parallel

to the y-axis. Here a = 5, 6=3, c = 4, e = |

Fig. 196 and a/e = ^^. Sketching the ellipse we find

from the figure that the vertices are (1, 3)

— 7), and the foci (1, 2) and (1, —6). The equations of the

33/4.

^ , "~^-4
-'&"
^^ ^s^

^ 0.2} ^
t X ^"

(/r2)

A ^ i\ "^^
^^^a:-._ : ^± -:

::::i:i±li^:-

and (1,

directrices are y = 17/4, y
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EXERCISES

In the following ellipses determine the major axis, the minor axis, the

coordinates of the center, the coordinates of the vertices and foci, and the

equations of the directrices. Sketch the curves.

1. 3 a-2 + 4 ?/2 = 12. 7. 3 a;2 + 3 2/2 = 12.

2. 4 a:2 + 3 ?/2 = 12. 8. x^ + 2y^= 8.

3. 4x2 + 2/2=16. 9. 4x2 + 9 2/2-16a;-18?/-23=0.

4. 36 x2 + 25 2/2 = 144. 10. 9 a;2 + 25 2/2 - 150 y = 0.

5. 2 x2 + 4 2/2 = 3. ^ 11. 4 a;2 + 2/^ - 8 a; + 4 2/ + 4 = 0.

6. 5x2 + 2/^^=75. 12. 9x2 + 42/2 + 36x-16 2/+16=0.

13. Write the equation of the following ellipses :

(a) Center at origin, major axis = 4 on x-axis, minor axis = 3.

(&) Center at origin, major axis = 5 on 2/-axis, minor axis = 3.

(c) Center at origin, major axis = 6, minor axis = 3 (two solutions).

(d) Center at origin, eccentricity 4/5, foci at (—2, 0) and (2, 0).

(e) Center at (1, 2), major axis = 6 parallel to x-axis, minor axis = 4.

(/) Foci at (0, 2) and (0, 8), major axis = 10.

14. An ellipse has its center at the origin, and its axes coincide with

the coordinate axes. The ellipse passes through the points ( VT, 0) and

(2, 1). Find its equation.

[Hint. Assume the equation of the ellipse in the form (1^.). Find a

and b from the fact that the ellipse must pass through the given points.]

15. Find the equation of the ellipse symmetrical with respect to the

coordinate axes if the major axis is twice the minor axis and the curve

passes through the point (2, 1). How many solutions ?

16. Show that the equation of the ellipse whose vertex is at the origin

and whose major axis is on the x-axis is of the form a'^y- = ?>2(2 ax — :e2).

17. Verify equation (I^) by deriving the equation of a conic whose

focus is at (— ae, 0) and whose directrix is the line x =— a/e.

18. Find the equation of the ellipse whose focus is at (0, 0), whose

directrix is the line x + 2/ — 1 = and whose eccentricity is 1/2.

19. Find the equation of the ellipse whose eccentricity is 1/3, whose

focus is at (3, 1) and whose directrix is the line 3x + 42/ — 1=0.

20. Find the equation of the conic whose focus is at (2, 1), whose

eccentricity is 3, and whose directrix is the line 3 x + 2/ = 1. What kind

of a conic is the curve ?
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225. Focal Radii. The segments F^P and F2P joining any

point P on an ellipse to the foci JF\, F.^, are called the focal

radii of the point P.

If the equation of the ellipse is given in the standard form (/,),

the focal radii of any poi7it P{xi, 2/1) «^e a — ea'i, a + exi.

A Y
P (x-„v,\

D,

M, M,

r>
/K

4

\^i F.J X

Fig. 197

For, from the definition of an ellipse (Fig. 197),

• FiP=e'M,P, F.P=e'PM.^

But from the figure, we have also

M,P='^ + x,, PM2 = --Xi.
e

Therefore the focal radii are

FiP = a -f ex„ F2P —a — exi.

From these relations follows the important property

:

The sum of the focal radii of any point of an ellipse is constant

and is equal to the major axis 2 a.

It may be noted that this relation still holds when the

ellipse is a circle (e = 0), although the method of its derivation

is not applicable in this case. An ellipse could, therefore, be

defined as the locus of a point which moves so that the sum of its

distances from two fixed points (the foci) is constant.
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226. Geometric Constructions of the Ellipse. The property

of the ellipse derived in § 225 gives the construction indicated

in Fig. 198 for the points of the ellipse when the foci and

the major axis are given.

1 ^~r-^
Fig. 198

The segment AB is the major axis. Different positions of P
on this segment give corresponding values AP and PB of the

focal radii of a point on the ellipse. Circles drawn with these

radii and centers at the foci intersect in points of the ellipse.

To each position of P on AB correspond four points of the

ellipse.

A very convenient method of drawing an ellipse is indicated

in Fig. 199. Two pins are stuck in the paper at the foci and

Fia. 199

a loop of thread thrown over them. If a pencil point is in-

serted in the loop and moved so as to keep the thread taut, it

will describe an ellipse. Why ?

Another method of constructing an ellipse (much used by

draftsmen) is based on the fact (§ 179) that if the ordinates of

the circle x"^ + 2/2 = a^ are shortened in the ratio b : a (b < a)
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there results an ellipse with major axis 2 a and minor axis 2 b.

The adjoining figure (Fig. 200) exhibits the method. Explain

and prove the method correct.

Fig. 200

[Hint. The two circles being of radii b and a respectively, we have

OB/OQ = b/a ; hence, MP/MQ = b/a. Why ?J

EXERCISES

1. Construct an ellipse whose foci are 2 inches apart and whose major

axis measures 3 inches.

2. Construct an ellipse whose major and minor axes are 2 and 1.6

inches respectively.

3. From the property of § 225 derive the equation of an ellipse.

4. From Fig. 200 show that the coordinates (x, y) of any point on the

ellipse (Ij.), p. 339, are given bj'^ the equations

x= acosQ, y = b sin 0,

where 6 is the angle MOQ. Do these values of x, y satisfy the equation

of the ellipse for all values of ^ ?

5. From the relation between the ordinates of a circle and an ellipse

whose major axis is equal to the diameter of the circle prove that any

plane section of a circular cylinder is an ellipse, provided the plane of

section is not parallel to an element of the cylinder.

6. Prove from the result of the last exercise that a properly determined

plane section of an elliptic cylinder is a circle.
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THE HYPERBOLA

227. Standard Equations of the Hyperbola. If e > 1, then

1 _ e2 < 0, and it is convenient to write (2), § 217, in the form

(13) {f — V)x^ — 'f-\-2jix-f'^ 0.

Completing the square and transforming as in § 218, we

obtain / \2 2 ^^ra.

This equation represents a hyperbola whose center is at the

point (— i)/(e^ — 1), 0) and whose axes coincide with the lines

x = - j>l{f - 1), and 7/ = (Fig. 201).

\:.
a

Xi

\ 6

a >yA ^n

y.
/"K \v^\(fl^^o)*x

/\
•>[ X

Fig. 201 Fig. 202

If the curve is moved parallel to the a>-axis so that its center

coincides with the origin (Fig. 202), its equation becomes

y
^2g2 p^e^

= 1.

(e2_i)2 e2_i

If, then, we place

the equation of the hyperbola becomes

(Ix)
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' Erom (14) we have the relation connecting a, b, e as

62 = a2(e2-l),

or

(15) e^ = ?i±*?.

Here, as in the case of the ellipse, it is important to note

some of the properties of the curve. It is seen that the

locus is symmetrical with respect to the line passing through

the focus and perpendicular to the directrix. This line is called

the principal axis and the segment of this line intercepted by

the curve is called the transverse axis and its length is 2 a.

The extremities of the transverse axis are called the vertices,

and the point midway between the vertices is called the center.

The curve is also symmetrical with respect to the line through

the center and perpendicular to the transverse axis. The seg-

ment on this line whose length is 2 6 and whose mid-point is

at the center of the hyperbola is called the conjugate axis.

If a hyperbola has its center at the origin, and if its trans-

verse axis 2 a is on the ?/-axis, and its conjugate axis is 2 b, its

equation is

(I) ^-y-=-i.

The equation of a hyperbola whose center is at the point

(h, k), whose transverse axis is 2 a, and whose conjugate axis

is 2 b, is

(IIJ (^_(J^ = 1, or (II.) (l|^-(l^^= -l,

according as the transverse axis is parallel to the x-axis or the

y-axis.

The equation of any hyperbola with axes parallel to the

coordinate axes may be written in the form

(III) Ax^-\-By^'-hDx + Ey-\-C=X), A>0,B<0;
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and every equation of this form (A > 0, B < 0) represents a

hyperbola or a pair of straight lines (cf. § 183).

As in the case of the ellipse, it is easy to show that every

hyperbola has two foci on the transverse axis, one on each

side of the center and at a distance

c from the center, where

c2 = 02^2= a2 -I- bK

With each focus is associated a

directrix perpendicular to the trans-

verse axis and at a distance a/e

from the center (Fig. 202).

The latus rectum, i.e. the chord

through the focus and perpendicular to the transverse axis pro-

longed, is of length 2 b^/a. The asymptotes of the hyperbola

Fig. 202 (repeated)

(x-hy {y-ky ^
¥

= 1

are the lines

(16)
{^-hY

&2

228. Geometric Properties of the Hyperbola. Tlie segment

from the center to a focus of a hyperbola is the hypotenuse of

a right-angled triangle ivhose legs are the semi-transverse and

senii-coiijagate axes. Why? It is readily seen, moreover,

that, if a rectangle be constructed by drawing lines through

the extremities of each axis parallel to the other axis, the

diagonals (extended) of this rectangle are the asymptotes of

the hyperbola (Fig. 202). The circle drawn on either diagonal

as a diameter passes through the foci. Why ?

229. Illustrative Examples.

Example 1. Find the coordinates of the center, the vertices, and the

foci, and the equations of the directrices and the asymptotes of the hyperbola

4x2-9.^2 + 36 = 0.
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The equation is readily transformed into the form

9 4

It is now seen that the center is at the

origin and that the transverse axis is along

the y-axis (Fig. 203). The vertices are

(0,2) and (0, -2). Since c = V^, the

coordinates of the foci are (0, Vl3) and

(0, — Vi3). The asymptotes are given

by 4a;2_9y2_o or 2x -Sy = and

2x-\-Sy = 0. Since e = \/l3/2 the equa-

tions of the directrices are

y = ±
Vis

±±vrs.

ss^ F. (h, ^) >j/

i j^X'Z^t M
s / T

^o^^ 1 ?
D^ ^i--=^r ?i

^i^^ ^2^^N
<^^ ^--'^ ^^^^y^ t-Ta-^tS^

Fig. 203

Example 2. Find the coordinates of the center, the foci, and the ver-

tices, and the equations of the asymptotes and the directrices of the

hyperbola

16 x2 - 9 1/2 4- 32 X + 54 ?/ - 209 = 0.

The given equation may be written in

the form

16(x + l)2-9(y-3)2=144,
or

(a; +1)2 (i/-3)2 _.^

9 10

The center is therefore at the point

(—1, 3) and the transverse axis is parallel

to the X-axis (Fig. 204). Since a = 3, the

vertices are (2, 3) and (-4, 3). More-

over, since c = V9 + 16 = 5, the foci are

at the points (4, 3) and (- 6, 3). Like-

14 4
wise, e = c/a = 5/3 and hence the directrices are x = — — ,

x = - • The

asymptotes are given by

16(a;+ 1)2 -9(2/ -3)2 = 0.

Why? That is, the asymptotes are the lines

4x-Sy-\-lS = 0,

and
4x-f-3y-5 = 0.

Y

\ ite "^
^v 4^

_ Cv- :---= ^^^^^' ^^L
^t" MA ' /ji\
/ \ '^

/ \
._S7_.X

\ ~/^\ uJii-
3j::_ _vt/
^Z ^ X2 X

7/^Z__::^g. "

^V ^ i^^^S
Z^ M ^^ \^
7 ^

Fig. 204



352 MATHEMATICAL ANALYSIS [XIII, § 229

EXERCISES

For each of the following hyperbolas determine the transverse axis, the

conjugate axis, the coordinates of the center, the coordinates of the ver-

tices and the foci, and the equations of the directrices and asymptotes.

Sketch the curves.

1. Sx^-4y^=12. 7. - 9 x2 + 2/'^ = 36.

2. 4 x2 - 3 2/2 = 12. 8. 2/2 - 2x2 = 4.

3. 4x2-3?/2z=_ 12. 9. 4x2- 12?/2_8x- 242/ - 56 = 0.

4. 3 x2 - 4 2/2 = - 12. 10. 5 x2 - 4 ?/2 -f 10 X + 25 = 0.

5. _36x2+25?/2 = 144. 11. 9x2 - 16i/2 + 18x - 96y - 279 = 0.

6. x2 - t/2 = 1. 12. x2 - 2/2 4. 2 X - 2 2/ = 2.

13. Write the equations of the following hyperbolas :

(a) Center at origin, transverse axis = 6 on x-axis, conjugate axis = 4.

(&) Center at origin, transverse axis = 8 on y-axis, conjugate axis = 10.

(c) Center at origin, transverse axis and conjugate axis = 4, axes

coinciding with coordinate axes. Two solutions.

(d) Center at origin, focus at (5, 0) and transverse axis = 8.

(e) Center at origin, transverse axis = 8, focus at (0, 5).

(/) Center at Origin, focus at (5, 0), conjugate axis = 8.

(g) Center at (1, 2), transverse axis = 6 parallel to x-axis, conjugate

axis = 4.

(A) Center at (0, 3), focus at (0, 5), conjugate axis = 2V3.
(i) Foci at (1, 2) and (1, — 8), transverse axis = 6.

14. A hyperbola has its center at the origin and its axes on the

coordinate axes; it passes through the points (0, VS) and (2, 3). Find

its equation.

[Hint. Since one point of the hyperbola lies on the ^/-axis, the equation

may be assumed in the form I^^, i.e.

62 a2

and a and b may then be determined.]

15. Show that the equation of any hyperbola whose vertex is at the

origin and whose transverse axis is on the x-axis is of the form a'^y- =
hH2 ax -}- .x2). (See Ex. 16, p. 344.)

16. A hyperbola whose asymptotes are at right angles is called rectan-

gular. Prove that the equation of a rectangular hyperbola may be written

in the form x2 — w2 = cfi.
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230. Focal Radii of the Hyperbola. If P{xi, y^) is any

point on the hyperbola whose equation is

i^2 _ ^ ^

the focal radii F^P and F2P are given by the equations

F^P= exi + a, F^P = ex^ — a.

The proof of the above statement is left as an exercise. It

is analogous to the corresponding proof ^n the case of the

ellipse (§ 225).

Hence, the difference of the focal radii of any point on a hyper-

bola is a constant.

A hyperbola could, therefore, be defined as the locus of

a point which moves so that the difference of its distances from

two fixed points (the foci) remains constant.

231. Conjugate Hyperbolas. Any hyperbola determines

uniquely a second hyperbola whose transverse and conjugate

axes coincide in position and length with the conjugate and trans-

verse axes respectively of the first

hyperbola (Fig. 205) . Thus, if the

equation of the first hyperbola is

a2 62
1,

the equation of the second hyper-

bola is ^2 2/2x^

a2
Fig. 205

Each of the two hyperbolas thus related is called the conjugate

of the other, and the two hyperbolas are called conjugate

hyperbolas.

Two conjugate hyperbolas have the same asymptotes. Why ?

2a



354 MATHEMATICAL ANALYSIS [XIII, § 231

EXERCISES

1. Geometric construction of the hyperbola. Show how to construct

a hyperbola given the foci and the length of the transverse axis by a

method depending on the property of the hyperbola derived in §230

and entirely analogous to the first method described in § 226 for con-

structing the ellipse.

2. Derive the equation of the hyperbola from the definition suggested

at the end of § 230. [Let the foci be i^i(c, 0) and i^2(- c, 0) and let

the constant difference of F\P and F2P be 2 a.]

3. What is the equation of the hyperbola x"^ — y^ — a^ after it has

been rotated about the origin through an angle of 45° ? (Cf. § 190.)

4. From the result of Ex. 3 determine the length of the transverse axis

of the hyperbola xy = k.

5. What are the equations of the hyperbolas conjugate to the hyper-

bolas in Exs. l-12,p. 352?

6. Prove that the foci of two conjugate hyperbolas are on a circle.

THE PARABOLA

232. Standard Equations of the Parabola. If in § 217 we
let e = 1, equation (2) becomes

(17) y^-2px+p^ = 0.

or

(18) y' =
'ip(^-fi-

We saw in § 183 that this equation repre-

sents a parabola whose vertex is at the

point (p/2, 0) and whose axis coincides

with the line y = (Fig. 206). If the curve is moved parallel

to the ic-axis so that its vertex coincides with the origin, the

equation of the curve becomes

The focus of the curve is now at the point (i>/2, 0) and its

directrix is the line x = — p/2 (Fig. 207).
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The following theorems follow directly. Their proofs are

left as exercises.

The equation of a parabola whose vertex is at the origin

and whose axis coincides with the ?/-axis is

(I,) x^=2/.j,.

The equation of a parabola whose vertex

is at the point {li, k) and whose axis is

parallel to the a;-axis is

(II,) (y-ky = 2p(x-h).

Fj(±l\o) X

Fia. 207

The equation of the parabola whose vertex is at the point

(h, k) and whose axis is parallel to the 2/-axis, is

(II,) {x-hy = 2piy-k).

The equation of any parabola whose axis is parallel to the

cc-axis is of the form

(III.) By'^ + Dx-\-Ey^C = 0.

The equation of any parabola whose axis is parallel to the

2/-axis is of the form

(inJ Ax^JrDx-\-Ey-\.C=0,

The distance from the vertex to the focus and from the

directrix to the vertex of the parabola y^ ==2px is p/2.

233. Geometric Properties of the Parabola. The chord

drawn through the focus and perpendicular to the axis is

called the latus rectum. Its length is twice the distance from

the focus to the directrix.

The focal radius connecting any point P{xi, 2/1) on the parabola

y2= 2px to the focus is equal to Xi -{-p/2.

The proofs of these properties are left as exercises.
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234. Illustrative Examples. Example l. Given the parabola

r^ = 6 y. Find the coordinates of tlie vertex and
the focus, and the equation of the directrix.

Sketch the curve.

The vertex is at (0, 0) and the axis of the

curve coincides with the y-axis (Fig. 208). The
distance from vertex to focus is 3/2. Therefore

the focus is at (0, 3/2). Likewise, the distance

from vertex to directrix is 3/2. Hence the equa-

tion of the directrix is y =— 3/2. To sketch the

curve, mark the focus, draw the latus rectum and

then sketch the curve.

1

_:_ _ + ^_
\ :V ~-t

L A

-^ -"""*:-

y ^

Fig. 208

Example 2. Given the parabola ?/2=:—8x+2?/+15. Find the coordi-

nates of the vertex and the focus, and the

equation of the directrix. Sketch the curve.

The given equation may be written as

(y-l)2=-8(a:-2).

Therefore the vertex is at (2, 1) (Fig. 209),

and the axis is parallel to the a!;-axis. The
distance from vertex to focus and from

directrix to vertex is — 2. Therefore tlie

focus is at (0, 1) and the equation of the

directrix is x — 4t. The curve is readily

sketched by plotting the focus and marking
off the latus rectum. It may also be sketched by plotting another point

or two.

1 'H

~

'*'

s I

s
s
\

(0,

1 J \:/
/

/
/^ T /

X '

Fig. 209

EXERCISES

Sketch each of the following parabolas. Determine the coordinates

of the vertex and the focus, and the equation of the directrix.

1. y2 = 4a.,

2. y^ =—4x.

3. 2/2 = 4 ic + 2.

4. y2__4a._^2.

5. x2 = 4 y.

6. x2=-4y.

10. a;2 -}- 4 X — 4 y + 6 = 0.

11. 2/2 _ 2a; -4?/- 8 = 0.

12. a:2 4- r/ -(- 1 = 0.

7. x^ = 4y +2.

8. x2 =-4?/ + 2.

9. 2/2 = 6x+ 12.

13. 2/2 = - 4 X + 2 y -f- 8.

14. y'^ + 2x-4y = 0.

16. x2 - 2 X -}- 2 y = 0.
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16. Write the equation of each of the following parabolas :

(a) Vertex at (0, 0) and focus at (2, 0).

(6) Vertex at (0, 0), axis coinciding with ?/-axis, curve passing through

the point (8, 4).

(c) Focus at (— 1, 3) and directrix the line a; — 1 = 0.

(d) Vertex at (1, — 2), axis parallel to x-axis, distance from vertex to

focus equal to 2.

(e) Vertex at (0, 2) , directrix parallel to a:-axis and parabola passing

through the point (2, 1).

235. The Intersections of Conies and Straight Lines. The

coordinates of the pomts of intersection of the ellipse

(19) 6V -f ay = a'^b^

and the straight line

(20) y = ma; + k,

are found by solving these two equations simultaneously for

(x, y). Eliminating y, we obtain the quadratic equation

(21) {W + a}m')x^ + 2 a'mkx + a\k''- - h^) = 0,

the roots of which are the abscissas of the points of intersection.

For each of these roots the corresponding ordinate is found by

substituting in (20). Why not in (19) ? We accordingly ob-

tain, in general, two solutions {x, y). These solutions are real

and distinct, real and equal, or imaginary, according as

(22) 62'^ (j2^2 _ ]^2 ^0, =0, or < 0.

Corresponding to these three cases, the straight line intersects

the ellipse in two distinct points, in two coincident points {i.e.

in a single point), or not at all.

The discussion just given includes for a = 6 the case of the

intersection of a circle and a straight line.

To treat the intersection of the hyperbola ly^x^ — aV = «^^^

with the straight line (20), we need only notice that alge-

braically we can reduce this problem to the preceding by

simply writing — 6^ for h"^. Why ?
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This leads to the equation

((^2^2 _ 52)3.2 ^ 2 a^mkx + a2(fc2 + b"^) = 0.

This is a quadratic equation unless a^mS _ 52 _ q^ if ^^2^2 _ 52

= 0, the line (20) is parallel to an asymptote, and, ii k ^ 0, it

meets the hyperbola in only one point. If A: = the line is an

asymptote and does not meet the curve at all. If a'^m'^ — b^z^O,

we conclude that the line (20) intersects the hyperbola in two

distinct points, two coincident points {i.e. in only one point), or

not at all, according as

(23) k'^-o?m^-\-¥>0, =0, < 0.

Finally, the line (20) will meet the parabola

(24) y' = 2px,

in the points whose abscissas are the roots of the equation

m2a;2 + 2(mk - p)x -\- k^ = 0.

If m = 0, the line meets the curve in only one point. If m ^ 0,

the line will intersect the parabola in two distinct points, two

coincident points, or not at all, according as

(25) p-2mk>0, =0, OY < 0.

Similar results are evidently secured also for straight lines

x = k, parallel to the 2^-axis. We then have the theorem :

Any conic is met by a straight line in the plane of the conic in

two distinct points, a single point, or not at all.

EXERCISES

1. Draw figures illustrating all the results of the last article.

2. In a manner similar to that of the last article discuss the intersec-

tions of the line y = mx -^ k and the conic y'^ = 2px-~ gx^.

3. Derive conditions analogous to (22), (23), and (25) of the last article

when the straight line is assumed in the form Ax + By -\- C = 0. These

conditions are slightly more general than those given in the text. Why ?
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236. Tangents and Normals. Slope Forms. If, for a given

value of m, the valae of k in the equation y = mx -f k is so deter-

mined that the intersections of the line y = mx -\- k with a given

conic coincide, i.e. so that the quadratic equation determining

the abscissas of the points of intersection has equal roots, the

line will be tangent to the conic. Why ? (See § 209.)

The slope forms of the equations of the tangents to a conic

result directly from the middle one of each of the conditions

(22), (23), and (25) for the determination of k. Hence the

equation of the tangent whose slope is m is

:

for the ellipse b'^x'^ -f a^y^ = a^b^^

(26) y =mx± Va^m^ + b^

for the hyperbola b'^x'^ — a^y^ = a^b"^,

(27) y = mx± Va^m^ - b^
;

for the parabola y^ == 2 px,

(28) y^mx+J--.
Am

We note that for a given slope the parabola has only one

tangent, the ellipse two, and the hyperbola either two or none

according as ahn^ — b^ '^ or < 0. [The condition a^m^ — &^

= yields the asymptotes.]

The line drawn perpendicular to a tangent through its point

of contact P is called the normal at P.

EXERCISES

1. Find the equations of the tangents to the following conies satisfying

the conditions given, and find for each tangent its point of contact

:

(a) 4x2+ 9y2 = 36, m = ^.

(6) y^ = Sx, inclination 30°, 45°, 135°.

(c) 9 x2 - 25 2/2 = 225, perpendicular to x + y -{-I =0.
{d) x^ -y^ = 1, parallel to 5 x -f 3 y — 10 = 0.

(e) y^ = 8x, perpendicular to 2x — Sy + Q = 0.
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2. Show that the line y = mx ± Vb'^ — a'^m^ is tangent to the hyper-

bola &2a;2 — a2y'2 -f a2^2 _ Q for all real values of m lor which h^ — d^nf- > 0.

3. For what value of k will the line y =2x + k be tangent to the

hyperbola x2 -4 2/2-4 = 0?

4. Find the coordinates of the points of intersection of the line

3x — w + l=0 and the ellipse x^ + 4 y2 = 55.

6. Find the points of contact of the tangents y = mx± Va^m^ + b'^ to

the ellipse b'^x'^ + a^y^ = a^b'^.

6. From the result of Ex. 5 find the equations of the normals to the

ellipse &2x- + a'^y'^ = a'^b'^ wliose slope is m.

7. By the method suggested in Exs. 5 and 6, find the equation of the

normal to the hyperbola bH^ — a-y^ = a^b'^ in terms of its slope.

8. Same problem as Ex. 7 for the parabola y^ = 2 px.

9. A tangent to the ellipse b'^x:^ -\- a^y^ = a-b^ will pass through the

point (xi, yi), if yi = mx\ ± Va'^m'^ + b'^. By solving this equation for m
show that through a given point (xi, yi) will pass two distinct tangents, one

tangent, or no tangents, according as b'^Xi^-^a^yi^—a^b'^ > 0, =0, or < 0.

10. By the method of Ex. 9, discuss the number of tangents that can

be drawn from a given point (xi, yi) to the hyperbola b'^x^ — a^y^ = cfib'^',

to the parabola y'^ =2 px.

11. Find the equations of the tangents to the parabola y^ = ix which

pass through the point (—2, — 2).

12. Find the equations of the tangents to the ellipse 4 x^ + y2 = ig

which pass through the points ( V3, 2) ; (0, 4) ; (0, 8)

.

237. Tangents. Point Form. The slope of the curve

(29) Ax^ + By^ + Dx + Ey-\-C= 0,

at a point (a^i, 2/1) on the curve, was found in § 184 to be

2By,-\-E

Hence the equation of the tangent to (29) at {xi, yi) is

2/ — 2/1 = — —-—^— (» — ^i)'

This reduces to

(30) 2 Axix + 2 Byiy + Dx-\-Ey = 2 Ax^'^ + 2 By^^ -f Dx^ -f Eyi
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Since (xi, yi) is by hypothesis on the curve (29), we have

2 Ax,^ 4- 2 Byi^ = -2 Dx^-2 Eyi-2 C.

Substituting this value in the right-hand member of (30),

2 Axx^ + 2 Byiy -\- Dx -\- Ey = - Dx^ - Ey^ -2 0.

Hence, by transposing and dividing by 2, we obtain the equation

of the tangent to (29) at the point (x^ y^ in the form

(31) Ax,x + By,y + 2)(^^±^ + E^^^^ + C = 0.
A A

This equation is readily written down from (29) by replacing

a;2, 2/2, X, and y by x^x., y^y, ^{x + x^), and }(y + y^), respectively.

By applying this rule to the standard equations of the conies

which are special cases of (29) we obtain

:

The equation of the tangent at the point (xi, y^
to the ellipse « y2

is
Jfi^, l/i2/_1.

a2
+ b2-^'

to the hyperbola

aj2 y^ ^

a2 62
is

to the parabola

2/2 = 2px is ViV = P{x + Xi

EXERCISES

1. Write the equation of the tangent to each of the following conies

at the point indicated :

(a) x2 + 4i/2 = 8, at (2, 1).

(6) 4a:2_3?/2 = 9, at (3, -3).
(c) y'^ — Qx = 0, at the point where y = — 3.

(d) x'^-y'^z=zA^ at (2, 0).

(c) x2-2?/2^_4, at(-2, 2).

(/) y2 — 4 X = 0, at the extremities of the latus rectum.



362 MATHEMATICAL ANALYSIS [XIII, § 237

2. Write the equation of the normal to each of the conies in Ex. 1 at

the point indicated.

3. Find the equation of the normal to each of the conies hH"^ + ahj'^ =
a^b^ b-x^ - aV = «^&^» and y^ = 2px at the point (xi, yi).

4. Prove that the tangents drawn to an ellipse at the extremities of any
diameter (chord through the center) are parallel.

6. Show that an ellipse and a hyperbola with common foci intersect at

right angles.

6. Show that the tangents at the vertices of a hyperbola meet the

asymptotes in points at the same distance from the center as are the foci.

7. Find the angle (in degrees and minutes) at which the two curves

a;2 + 2 y'-^ = 9 and ?/2 + 4 x = intersect.

8. Show that the secant of the parabola y^ = 2px joining the points

(xi, yi) and (X2, yt) on the curve has the equation 2 px - (?/i + yi)y -\- yiy2=0.
Show that this reduces to the equation of the tangent when the given

points coincide.

238. Geometric Properties of Tangents and Normals to

the Parabola. Let the parabola have the focus F, the vertex

V, and the directrix d, the latter

meeting the axis VF in D (Fig.

210). If the vertex is chosen

as origin of a system of rectan-

gular coordinates and the axis

is chosen as the avaxis, while

the segment DF is denoted by

p, the equation of the parabola

is y^ = 2 px. Now let P{x^, 2/0

be any point on the parabola. The equation of the tangent at

this point is y^y =p{x -\-x^. This tangent meets the axis of

the parabola (the a>-axis) in the point T{—x^y 0). Hence

TV= VM,

where M is the foot of the perpendicular dropped from P on

the axis. From this, and by the definition of the parabola,

d

L V-^^^

/^'V\T D

Fig. 21
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follow the relations

TF=DM=LP=FP,
where L is the foot of the perpendicular drawn from P to the

directrix. Hence TFPL is a rhombus. We conclude further

that ZLPT=ZTPF',

and, if S is the intersection of the diagonals of the rhombus

TFPL, that the angle FSP is a right angle. Moreover, the

line drawn through V, the mid-point of TM, perpendicular to

TM, passes through S. We have then the following theorems :

Theorem 1. Tlie tangent to a parabola at any point P bisects

07ie of the angles formed by the focal radius ofP ayid the line

through P parallel to the axis of the parabola ; the normal at P
accordingly bisects the other angle.

Theorem 2. The foot of the perpendicular dj-opped from the

focus on any tangent to the parabola is on the tangent at the

vertex.

EXERCISES

1. Prove theorems 1 and 2 of § 238 analytically.

2. Give a geometric construction for the tangent to a given parabola

at a given point. (The axis of the curve as well as the curve is supposed

to be given.

)

[A geometric construction means a construction with ruler and

compass.]

3. Given the focus and directrix of a parabola, show how any num-
ber of points of the parabola can be constructed on the basis of the

results of the last article.

4. Given the focus of a parabola and the tangent at the vertex, use

Theorem 2 of § 238 to draw any number of tangents to the parabola.

These tangents will give a vivid picture of the shape of the curve ; the

tangents are said to envelop the curve. The curve itself is not supposed

to be given.

5. The outline and axis of a parabola are given ; show how to

construct the focus and directrix.
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6. To construct the tangents to a giv6n parabola from a given

external point. Assume that the focus and directrix and hence the axis

are given.

[Analysis: If Q is the given point, it

follows from Theorem 1 of the last article

that A QLiPi and A QFPi are congruent.

Hence,

Li
^'-^^,

kD KX
l; 'XpF

IV

QLi = QF.

We determine Zi (and Z2), therefore, as

the intersection with the directrix of the

circle with center Q and radius QF. Com-
plete the construction. How is the con-

struction affected when Q assumes various positions in the plane ? When
is the construction impossible and why ? What happens when Q is on

the curve ?

7. In the figure of Ex. 6, prove that the line through Q parallel to the

axis bisects the "chord of contact" P1P2.

8. If a parabola is rotated about its axis the sur-

face generated is called a paraboloid of revolution.

Prove that if a source of light is placed at the focus

of such a paraboloid*, all the rays issuing from the

source will be reflected in the same direction (par-

allel to the axis of the paraboloid). This is the prin-

ciple of the so-called parabolic reflectors, used on searchlights, etc.

9. By an argument similar to that employed in § 212, prove that the

equation of the chord of contact of the tangents drawn from an external

point (xi, 2/1) to the parabola y'- = 2px is ijiy =p(x + Xi). This line

is called the polar of the given point with respect to the parabola. It is

defined by its equation even when no tangents can be drawn through the

given point.

10. Prove that the polar of a point Q is parallel to the tangent at

the point in which the line through Q parallel to the axis meets the

parabola.

11. Prove that the length of the so-called subnormalMy oi a parabola

at the point P (see Fig. 210) is independent of the position of P on the

curve.

12. Prove (Fig. 210) that TF = FN = FP and that FS=\ FN.

The focus of the generatmg parabolai is called the focus of the paraboloid.
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13. Use the relation FN' = FP (Ex. 12) to show how to construct the

normal at a given point P of a parabola (the focus and axis also being

given). Construct a considerable number of normals in this way and

show that they envelop a curve. (See Ex. 4 for the meaning of

" envelop.")

14. Show that any two perpendicular tangents to a parabola intersect

on the directrix.

239. Geometric Properties of Tangents and Normals to

the Ellipse. If for any ellipse we let the coordinate axes coin-

cide with the axes of the curve, the equation of the ellipse has

the form

The equation of the tan-

gent at any point Pi(a;i, i/i) is

b^x^x -h a%y = a^b^. _
A

The a>-intercept (Fig. 211)

of this tangent is

Xi

The remarkable thing about

this result is the fact that it is independent of b and of y^.

This means that if any other ellipse be given having the axis

A'A in common with the first ellipse, then the tangent drawn

to this new ellipse at a point having the abscissa x^ will also

pass through T. This is therefore true of the circle drawn on

A'A as diameter. If A'A is the major axis of the ellipse, this

circle is called the major circle of the ellipse ; similarly the

circle drawn on the minor axis of any ellipse as diameter is

called the minor circle.

* We do not in this article impose the restriction a > 6.
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A geometric construction for the tangent at any point Pj of

an ellipse follows readily from the above considerations (as-

suming that in addition to the curve one of the axes is given).

Figure 211 shows the construction using the major circle and,

in broken lines, the construction using the minor circle.

The following theorem is of fundamental importance in dis-

cussing the geometric properties of the ellipse

:

Theorem 1. Tlie tangent and the normal to an ellipse at a given

point bisect the angles formed by the focal radii drawn to the point.

Proof. We are to prove that the tangent at Pj (Fig. 212)

bisects the angle F^PxR, and that the normal at P^ bisects the

angle F^P^F^. To this end we calculate first the tangent of

the angle SP^R. Using the equation of the ellipse as given

above and taking the foci to be PgCc, 0) and Pi(— c, 0), we have

the slope of the tangent P^S = -^,
a^y^

the slope of F,R (i.e. FiP,)= -^—
The tangent of the angle <^i from P^S to P^R is then

Xi -\- c a^yi
tan d)i — —

^'
1 b%y,

a%{x, + c)

Simplifying this expression, we find

tan <^i =—-.

The tangent of the angle <^2 from P^S to P^F^ may evidently

be obtained by simply changing c to — c in the last result.

(Why?) Hence, .,

tan <f)2==
•
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We conclude that <^2 = — ^v This proves that PiS bisects the

angle F^PiB. That the normal bisects the angle FiP^F^

follows at once from elementary geometry.

The theorem just proved leads at once to another geometric

construction for the tangent (and normal) to an ellipse at

a given point, supposing the foci of the ellipse are known.

Theorem 2. The foot of the perpendicular dropped from

either focus on any tangent to an ellipse lies on the major circle.

Proof. (See Fig. 212.) Let S be the foot of the per-

pendicular dropped from F^ on the tangent P^S, and let it

meet the line F,P^ in R. Then F^^P^B

is an isosceles triangle (why?) with

P^R = P.F^. We have then

F,R = F,P, + P,F^ = 2 a. (§ 225)

Also aS' is the mid-point of F2R and

O is the mid-point of FiF^. Hence

OS=^FiR==a, and S is on the major

circle.

We should note also that, if Q is any

point on the tangent PiS, then QR = QF2, which is important

in connection with the problem of drawing the tangents to an

ellipse from an external point. (See Ex. 5, below.)

Fig. 212

EXERCISES

1. Show how to construct the tangent to a given ellipse at a given

point. (Two constructions, one using the major circle, one using the

foci.)

2. Show that, in Fig. 211, OA is a mean proportional between OM
and OT.

3. Show that, in Fig. 212, OFi is the mean proportional between the

intercepts on the cc-axis of the tangent and normal at Pi.
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4. Prove analytically that S (Fig. 212) is on the major circle.

5. Show how to construct the tangents to an ellipse from a given ex-

ternal point Q. [Hint : Construct B (Fig. 212) as the intersection of two

circles, one with center Fi the other with center Q.]

6. Show that if a right angle moves with its vertex on a given circle

and one of its sides passing through a fixed point within the circle, the

v-^ther side will envelop an ellipse.

7. Use the result of Ex. 6 to construct a considerable number of tan-

gents to an ellipse, given the major circle and one focus (the outline of

the ellipse is not supposed to be given in advance, but will appear vividly

after this problem is solved).

8. If an ellipse is rotated about its major axis the surface generated is

called a prolate spheroid. Show that sound waves issuing from one focus

will be reflected by the surface to the other focus. This principle is used

in the so-called '
' whispering galleries.

'

'

9. By an argument similar to that used in § 212 show that the equation

xxi/a^ -f yyi/b'^ = 1 is the equation of the line joining the points of contact

of tangents drawn from (xi, yi) to the ellipse x^/a''^ + y'^jW- — 1.

240. Geometric Properties of the Hyperbola. Many of

the geometric properties of the hyperbola are similar to cor-

responding properties of the ellipse, which is to be expected

in view of the similarity of their equations. The following

two theorems are fundamental

:

Theorem 1. Tlie tangent at any point of a hyperbola bisects

the angle betiveen the focal radii di-aion to the point. The normal

bisects the adjacent supplementary angle.

Theorem 2. The foot of the perpendicular dropped froin

either focus on any tangent to a hyperbola is on the circle drawn

on the transverse axis as diameter.

The proofs of these theorems are left as exercises. They

are similar to the proofs of the corresponding theorems on the

ellipse. Draw figures illustrating Theorems 1 and 2.
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Certain new properties of the hyperbola relating to the

asymptotes will be found among the exercises below..

EXERCISES

1. Show how to construct the tangent and the normal to a given

hyperbola at a given point.

2. If P is any point on a hyperbola, OA the semi- transverse axis,

ifcf the foot of the perpendicular dropped from P on OA (produced), and

T the point in which the tangent at P meets OA, prove that OA is a

mean proportional between Oilf and OT.

3. With the notation of Ex. 2 show that OFi is the mean propor-

tional between ON and OT, Fx being the focus on OA and N the point

in which the normal at P meets OA (produced).

4. Prove Theorem 2 (§ 240) analytically.

5. Show how to construct the tangents to, a hyperbola from an ex-

ternal point.

6. Show that if a right angle moves with its vertex on a given circle

and one of its sides passing through a fixed point outside the circle the

other side will envelop a hyperbola.

7. The construction of tangents to a hyperbola analogous to Ex. 7,

p. 368.

8. Use Ex. 3 above and Ex. 3, p. 367, to show that an ellipse and

hyperbola having the same foci intersect at right angles ,

9. Prove that, if a tangent to a hyperbola meets the asymptotes in

Ti and T2, the point of contact of the tangent is the mid-point of the

segment T1T2.

10. Prove that the area of the triangle formed by any tangent and the

asymptotes of a hyperbola is constant (= a6).

11. Show that if a straight line cuts a hyperbola in Pi and P2 and the

asymptotes in ^1 and ^2 the segments PxQx and P2^2 are equal. Use

this result to construct any number of points of a hyperbola when the

asymptotes and one point of the curve are given.

12. By an argument similar to that used in § 212 show that the

equation xxx/a^ — yyi/h^ = 1 is the equation of the line joining the

points of contact of the tangents drawn from (cci, 2^1) to the hyperbola

a;2/a2 - 2/2/62 = 1.

2b
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241. The Conies as Plane Sections of a Cone. We stated

in § 216 that the ellipse, hyperbola, and parabola could all be

obtained as the plane sections of a right circular cone. This

we shall now proceed to prove. In doing so we shall get the

machinery for solving problems of a more general type.

If a point P in a plane a (Fig. 213) is joined to a point

S not in a by a straight line SP, the intersection P' of SP
by a plane a' is called the projection

of P from S upon a'. Similarly, if

all the points of a curve in a be

joined to S, the intersections of these

lines with a plane a' form a curve C",

Fig. 213 ^^v/ which is called the projection from S
of the curve C. The point JS is called the center of projection,

and the process described is called central projection, to dis-

tinguish it from orthogonal projection previously considered

{e.g. in § 135).

If, now, the curve C in the plane a is a circle, the lines

through jS and the points of this circle form a cone with vertex

S. This is not a right cone, in general. As the lines through

S are not supposed to terminate in S, we get a so-called co7n-

plete cone, or cone of two nappes, which consists of two con-

gruent ordinary cones placed vertex to vertex so that their

axes form a straight line. It will now be clear that a plane

section of this cone is the same as the projection of the circle

C from the vertex S upon the plane of section.

We have then reduced the problem to that of finding the

central projection of a circle. We will solve it by finding the

relation between the coordinates of a point P in a and the co-

ordinates of the corresponding point P' in a'. To this end

(Fig. 214) let be the foot of the perpendicular dropped from

JS on the line of intersection of the planes a and a'. Let be
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the origin and let the line of intersection OF of the two planes

be the 2/-axis in the system of coordinates in each of the two

planes. Let the line OX perpendicular to 01^ in a be the

a^axis in a, and the line OX' perpendicular to OF in a' be the

ic-axis in a'. Let the angle between the two planes be ; then

X'OX= 0. Now let P{x, y) be any point in the plane a, and

let P\x\ y') be the projection of P from S. We seek the

relation connecting the coordinates x, y, x', y'.

Draw ST parallel to OX, and represent the length OS by h.

Then we have

T0=^, TS= ^
sinO tand

We then have from similar triangles

x' :{TO-i-x') =x:TS,

y':y = SM^ : SM= TM' : TO.

If we substitute the values of TO, TS, and TM' (= TO + x'),

we obtain ,

x' + h h '

sin tan
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and , ,
h

sind1^
y _Jl_

sin B

Solving these equations for x and ?/, respectively, we have

_ li cos 6 • x' _ hy'
^~ ^mO'X' + h' ^"sin^-x' + Zi*

If these expressions be substituted for x and y in the equa-

tion of any curve in the plane a, the resulting equation in x'

and y' will be the equation of the projection of the curve in a'.

To solve the problem we proposed at the outset, let the curve

in the plane a be the circle

x'^-\-y^=a\

The equation of the corresponding curve in a' is then

7^2 cos2 ^ . x'2 -f hhj"^ = tt2 sin2 e-x'^+2 lia^ sin • x' -\- a%\

Collecting like terms, we have
*

(/i2 cos2 e-a" sin2 6) x"- + li'y'^ - 2 ha" sin 6 - x' - aVi^ = 0.

We see at once that this is the equation of a conic. It is an

ellipse, a parabola, or a hyperbola according as

/i2cos2^-a2sin2^>0, = 0, or < 0,

i.e. according as

tan ^ - - < 0, = 0, or > 0.

a

But h/a is the tangent of the angle <^ which an element of the

cone with vertex S makes with the plane a. If is less than

this angle
(f>,

the section of the cone is an ellipse ; if ^ is equal

to <^, the section is a parabola ; and if 6 is greater than <^,

the section is a hyperbola. Note that this result is in accord-

ance with our geometric intuition of the situation.
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EXERCISES

1. Prove that the central projection of any circle is a conic ; that is,

that a plane section (not through the vertex) of any circular cone (not

necessarily a right cone) is a conic.

[Hint : Complete generality will be secured by taking the equation of

the circle in a to be x'^ ^- y'^ -{ dx -\- c = 0. Why ?]

2. Prove that the central projection of any conic is a conic.

,3. Prove that the central projection of a straight line is a straight line.

4. Prove that there exists in a just one straight line which has no

corresponding line in a', namely the line of intersection of a with the

plane through S parallel to a'. This line is called the vanishing line of a.

5. Prove that the central projection of a circle in a is an ellipse, a

parabola, or a hyperbola, according as the vanishing line in a meets the

circle in no points, one point, or two points.

242. Poles and Polars. Diameters. We have had occasion

in several exercises to note that the equation which represents

the tangent to a conic at the point Piix^ , y^ when Pj is on the

curve, represents a straight line called the polar of Pi when Pj

is any point in the plane. Pi is then called the pole of the

line with respect to the conic. The polar of a point on the

conic is then the tangent at the point. We have also seen

that the polar of a point Pi through which pass two tangents

to the conic is the line joining the two points of contact of the

tangents. In the more extensive geometric theory of conies

poles and polars play an important role.

A straight line passing through the center of an ellipse or

hyperbola is called a diameter of the conic. Every diameter

of an ellipse meets the curve in two points ; some of the

diameters of a hyperbola meet the curve in two points. These

points are then called the extremities of the diameter, and the

distance between them is called the length of the diameter.

Any line parallel to the axis of a parabola is called a diameter

of the parabola. Other properties are given in exercises below.
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MISCELLANEOUS EXERCISES

Properties of Poles and Polars

1. Write the equation of the polar of each of the following points

with respect to the conic given, and draw the corresponding figure :

(a) (1,5); 2a;2 + y2^4. (d) (- 1, 3) ; a;2 + 2/2 + 4 x - 6 y- 2 = 0.

(6) (2,0); 4x2-92/2 = 36. (c) (2, - 3) ;
2/2 = 6x.

2. Find the pole of the line 3x — 4y4-12 = with respect to tho

following conies :

(a) 3x2 + 4 y2 = 12
;

(ft) a;2 - 5 y2 = 20
;

(c) y^ = Sx; (d) x'^ = iy.

3. Prove that in any conic the polar of a focus is the corresponding

directrix.

4. Prove that in any conic, if Pi and P2 are two points such that the

polar of Pi passes through P2, the polar of P2 will pass through Pi.

5. From the result of the last exercise follows geometrically the follow-

ing theorem : If a straight line be revolved about a point P and tangents

are drawn at the points where it meets a conic, the locus of the intersec-

tion of these pairs of tangents is the polar of P with respect to the conic,

or a part of the polar. Which part will it be ?

6. Prove that the polar of any point on a directrix of a conic passes

through the coiTesponding focus. [See Exs. 3 and 4.]

7. A straight line through a point Pi meets a conic in Ci and C2, and

the polar of Pi in Q. Prove that Pi and Q divide the segment C1C2 in-

ternally and externally in the same ratio.

[Solution : Let Pi(xi, yi) and P2(X2, 2/2) he any two points. Then

the point P whose simple ratio with respect to Pi and P2 is X has the co-

ordinates
^ _ xi + Xx2 , _ 2/1 + X1/2

If these be substituted in the equation of the ellipse bH^ 4- a^y^ = ajb^ and

the resulting equation arranged as a quadratic in X, we have

/^4.y22_l^^2 + 2f^2^M_2_l^x + f^' + ^'-lUo.
V a2

^ 62 ) ^ \ a^ ^
b^ J \a^ b^ J

The roots of this equation are the simple ratios of the points Pi and P2,

respectively, with respect to the points d, C2 in which the line P1P2 meets

the ellipse. If the segment Ci, C2 is to be divided internally and ex-

ternally in the same ratio the roots Xi, X2 of this equation must be equal

numerically, but opposite in sign, i.e. Xi -f- Xo must be zero. The coefficient
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of X in the above equation would then be zero, if the theorem to be proved

is true. But the condition

«2 ^ 62

is precisely the condition that P'z{x2^ y-2) be on the polar,

of Pi with respect to the ellipse. The similar proofs for the hyperbola and

parabola are left as exercises.]

8. Two points P, Q on the line joining two given points d, C2, are

said to divide the segment Gi C-i, harmonically, if they divide the seg-

ment internally and externally in the same ratio (i.e. if CxP/PCi =
— O1Q/QC2). Show that the result of the last exercise leads to the fol-

lowing : The locus of a point Q^ such that a given point P and the point

Q divide harmonically the segment joining the points in which the line PQ
meets a conic is the polar of P with respect to the conic, or a part of the

polar. Which part is it ? (Compare with the similar question in Ex. 5.)

Properties of Diameters

9. ProTB that the locus of the mid-points of the chords of a conic

drawn parallel to a given chord is a diameter of the conic.

[Solution for the Ellipse : Let the equation of the ellipse be

b^2c^ + a^y^ = a^b'^, and let the slope of the given chord be m. Then any

chord parallel to the given chord isy = mx + k. The abscissas Xi, X2 of

the points in which this chord meets the ellipse are the roots of the

equation
(62 + a2^2)a;2 + 2 a^mkx + a^(k^ - 62) = 0.

The sum of the roots of this equation is

Xi-}-X2= —
62 -I- a^n^^

The coordinates (x', y') of the mid-point of the chord are then

X' = itixi -f X2) = -TT^^, y' = mx' +k= ^'^
62-|-a2m2' 62 + a2m2

The coordinates x', y' then satisfy the equation y = — (b^x^/(a^m), no

matter what the value of k is. The locus of the mid-points of the

chords whose slope is m is, therefore, the straight line whose equation is

y = — (62x)/(a2m). Since this straight line passes through the center of
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the ellipse, the theorem is proved for the ellipse. The similar proofs for

the hyperbola and parabola are left -as exercises.]

10. From the result of the last exercise, show how to construct a

diameter of any conic, and hence (in case of ellipse and hyperbola) how
to find the center, when only the outline of the curve is given.

11. Having given the outline of an ellipse or hyperbola, construct the

center. Then show how to construct the principal axes (make use of the

fact that the principal axes are axes of symmetry ; a circle drawn with

the center of the conic as center and suitable radius will meet the conic in

the four vertices of a rectangle whose sides are parallel to the principal

axes). Then construct the foci and the directrices.

12. Having given only the outline of a parabola, show how to construct

the axis, the focus and the directrix.

13. Show that the tangent drawn to a conic at an extremity of a

diameter is parallel to the chords which the diameter bisects.

14. If two diameters of a conic are such that each bisects the chords

parallel to the other, the diameters are said to be conjugate; and each

is called the conjugate of the other. Prove that if wi, W2 are the slopes

of two conjugate diameters of the ellipse h'^x'^ + a'^y'^ = d^h'^, then we have

m\m2. = — ly^/a^.

15. Prove that, if wi, mi are the slopes of two conjugate diameters

of the hyperbola fe^x^ _ a'iyi — a-h'^, we have WiW2 = h'^/a^.

16. The only conic for which all pairs of conjugate diameters are per-

pendicular is the circle.

17. The polars of the points on any diameter of an ellipse or hyperbola

are parallel to the conjugate diameter.

18. If one extremity of a diameter of an ellipse Jfix^ -\- a^y'^ = aV)^

has the coordinates (xi, yi), one extremity of the diameter conjugate to

the given one will have the coordinates (— yia/b, X\b/a).

19. The area of a parallelogram circumscribed about an ellipse whose

sides are parallel to two conjugate diameters is constant and equal to 4 db.

20. Prove that, if a\ and &i are the lengths of two conjugate semi-

diameters of an ellipse, a\^ + fti^ = a^ -f h^.

21. Prove that any pair of conjugate diameters of the hyperbola

6%2 _ 052^2 _ 0,252 are also conjugate diameters of h'^x^ — a^y'^ = — aP'h'^.

22. If a diameter of a hyperbola with center meets the hyperbola in

P and the conjugate diameter meets the conjugate hyperbola in Q, prove

that 0P2 _ 0q^ = (£^ - 62.



CHAPTER XIV

POLAR COORDINATES

243. Review. Polar coordinates, introduced in §§ 112-114,

are often useful in studying geometry analytically. The

present chapter is devoted to illustrating some of the principles

involved and their applications.

EXERCISES

1. What is the locus of points for which p is constant ?

2. What is the locus of points for which 6 is constant ?

3. Show that the points (p, d) and (/s, — 0) are symmetric with respect

to the polar axis.

4. Show that the points (/>, 6) and (— p, 6) are symmetric with respect

to the pole.

6. Show that the points {p,.d) and (/>, d + 180°) are symmetric with

respect to the pole.

6. Find the distance between the points A (2, 45 '^) and B(7, 105°).

[Hint. Use the law of cosines.]

7. Prove that the distance between the points (pi, ^i) and (p2, ^2) is

Vpi'^ + pi^ - 2 P1P2 cos {62 — di).

244. Locus of an Equation. The locus of an equation in the

variables p and is such that

:

(1) Every point whose coordinates (p, 0) satisfy the equation

is on the locus or curve, and

(2) A set of coordinates * of every point on the locus or curve

satisfies the equation.

* Not necessarily every set. Thus, the point (2, 60°) = ( - 2, 240°) is on the

locus of p = 1 + 2 cos 6 ; but the second set of coordinates does not satisfy the

equation.

377
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The curve may be sketched by computing a table of corre-

sponding values of p and 6, plotting the corresponding points,

and then sketching the curve through them. The amount of

work may often be shortened if one makes use of the following

obvious rules for symmetry :

If a polar equation is left unchanged,

(a) ichen 6 is replaced by — 6, the locus is symmetric with re-

spect to the polar axis.

(b) when p is replaced by — p, the locus is symmetric with re-

spect to the pole.

(c) ivheyi 6 is replaced by 180° + 6, the locus is symmetric with

respect to the j)ole.

(d) ivhen 6 is replaced 6?/ 180° — 9, the locus is symmetric ivitJi

respect to the line through the pole perpendicular to the polar axis.

It should be borne in mind, however, that none of these rules

are necessary conditions for sym-

metry. Why not ?

245. Illustrative Examples.

We shall illustrate the methods

of plotting curves in polar coordi-

nates by the following examples.

Example 1. Discuss and plot the

locus of the equation p = 4 cos 6.

The locus is symmetric with respect

to the polar axis. If we plot points

from 0° to 90°, we obtain the upper

half of Fig. 215. Then by symmetry

we obtain the complete graph given in

Fig. 215. Why ?

Fig. 215

d 0° 30° 45° 60° 90°

p 4 3.5 2.8 2
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Example 2. Discuss

and plot the locus of the

equation p — 4t &m'^ 6.

The locus is symmetric

with respect to the pole,

the polar axis, and the Ime

through the pole perpendic-

ular to the polar axis. If

we plot points in the range

^=0° to 0=90°, and make

use of symmetry, we have

the complete figure which

is given in Fig. 216.

e

p

0° 30°

1

45°

2

C0°

3

90°

4
Fig. 216

The branches constructed

by symmetry should be

checked by substituting in

the original equation the

coordinates of at least one

point on each branch. Seri-

ous errors may thus be

avoided.

Example 3. Discuss and

plot the locus of the equa-

tion p =: 1 -h 2 cos (9.

The curve is symmetric

with respect to the polar

axis. If we plot points

from 6 = 0° to 6= 180°, we
get the points shown in

Fig. 217. Then by symmetry we get the complete graph, or the curve

in Fig. 217.

Fig. 217

6 0° 30° 45° 60° 90° 120° 135° 150° 180°

P 3 14-V3 1 -H\/2 2 1 1-V2 1-V3 -1
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EXERCISES

Are the following loci symmetric with respect to the pole ? The polar

axis ? The line through the pole perpendicular to the polar axis ?

1. p = a cos 0. 5. p- = a cos 2 d. 9. p = a sin2 6.

2. p = a sin d. 6. p'^ = a sin 2 6. 10. P = sin^l

p = e.3. p = a (1 — cos d). 7. p = a cos 2 ^. 11.

4. p = a(l — sini9). 8. p = a sin 2 ^. 12. p2 cos 0=4.

Discuss and plot, thelocus of each of the following <equations.

13. p = 5. 22. p cos ^ = 4. 31. p =z 1 + 2 sin e.

14. p=- 5. 23. p cos ^ = — 4. 32. p = 1 — 2 cos d.

15. p2 = 25. 24. p sin ^ = 5. 33. P = 1 — 2 sin 0.

16. ^ = 30°. 25. p sin ^ = - 6. 34. p = 2 + cos 0.

17. e=- 30°. 26. p = 1 - cos ^.
35. p = 2 + sin d.

18. p = 8 cos d. 27. p = 1 + cos ^.
36. p = 4 tan d.

19. p = - 8 cos e. 28. p = 1 ~ sin ^. 1

29. p = 1 + sin 0.
37. p — '

20. p = 8 sin e. l-cos^*
21. p = — 8 sin e. 30. p = 1 + 3 cos ^.

246. Standard Equations. We shall now derive polar equa-

tions for the straight line and the conic

sections.

The straight line. Let CD be any straight

line (Fig. 218) ON = p the perpendicular

let fall upon it from the pole 0, and a the

angle which this perpendicular makes with

the polar axis. Let (p, 0) be any point on

the line.

ON
Then --- = cos (0 — a) or cos (a — 6).

But by § 120,

cos (0 — a) = cos (a — $).

Hence

(1) P = p cos (6 - a)

is the desired equation.
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If the line is perpendicular to the polar axis, its equation is

p cos ^ = p. Why ?

If the line is parallel to the polar axis, its equation is

p sin ^ = p. Why ?

The circle. Let C (c, a) be the center of a circle of radius r

and P (pj 6) any point on the curve (Fig. 219). In the triangle

Fig. 219

OOP, OC=c, OP = p and the angle COP = ± (0 - a)

depending upon the position of the point P. But since

cos (0 — a) = cos {a — 0), we have from the law of cosines,

§126,

(2) r2 = c2 + p2 _ 2 c p cos (6 - a)

as the equation of the desired locus.

If the center C is upon the polar axis (a — nir), equation (2)

becomes

(3) r2 = c2 -f p2 ± 2 c p cos d.

If the circle passes through the pole (r = ± c), equation (2)

becomes

(4) p = ± 2rcos(^-a).

If the center C is upon the polar axis (a = 0) and the circle

passes through the pole (c = ± r), equation (2) becomes

(5) p = ± 2 r cos 6.

If the center is at the pole (c=0), equation (2) becomes p= ±r.
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The Polar Equation of any Conic. The polar equation of

any conic may now be derived. Let DD' be the directrix, F
the corresponding focus, and e

the eccentricity. Let the per-

pendicular through F to DD'

meet DD' in L. Let the segment

LF= p, and take F as the pole

and the extension of the line LF
as the polar axis. If P(p, 6) is

any point on the curve and PS
is the perpendicular from P to

DD\ then by the definition of a

PS,

Fig. 220

conic, we have

that is,

or

(6)

FP==e

p = e{p + p cos 6),

1 — e cos 6

which is the polar equation of a conic. If e < 1, the equation

represents an ellipse ; if e = 1, a parabola ; e > 1, a hyperbola.

EXERCISES

1. Derive the equation p = 2 r cos [ (5) , § 246] directly from a figure.

2. Derive tiie polar equation of the ellipse assuming the right-hand

focus as the pole and the major axis as the polar axis.

3. Derive the polar equation of a hyperbola assuming the right-hand

focus as the pole and the transverse axis as the polar axis.

4. Derive the polar equation of the circle which passes through (0, 0°)

and has its center at (r, 90°)
;

(r, 270^).

6. Derive the polar equation of the parabola assuming the focus at the

pole and the directrix the line p sind = p ;
psind = — p.

6. The difference of the focal radii of a certain hyperbola is 3, and the

distance between the foci is 6. Find a polar equation of the curve.
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247. Other Curves. What is the advantage of polar coordi-

nates ? Why not continue to use only rectangular coordinates ?

The answer to these questions is that in certain kinds of

problems polar coordinates are much more convenient. The

following examples will illustrate the desirability of polar

coordinates.

The limacon. Through a fixed point upon any given circle

of radius a, a chord OPi is drawn and produced to P so that

Fig. 221

P^P = kj where A; is a given constant (Fig. 221). Find the

locus of P"* as Pi describes the circle.

If p — 2 a GosO is the

equation of the circle and

the pole is the fixed point,

then the locus of P is

(7) p = 2 a cos 0-\-Jc.

If k = 2 a, the equation

may be written in the form

(8) p = 2 a(l + cos 0)

and the curve is known as the

cardioid, on account of its

heart-shaped form (Fig. 222). fig. 222. - The Lima9on

* This curve is known as the lima<^on of Pascal. It was invented by
Blaise Pascal (1623-1662) , a famous French mathematician and philosopher.

The word lima(;on means snail. The Germans call this curve die PascaVsche
Schnecke.
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The cissoid. OA is a fixed diameter of a fixed circle (Fig.

223). At the point A a tangent is drawn, while about the

point a secant revolves which meets the tangent in B, and

the circle in C. Find the locus of a point P on OB so deter-

mined that 0P= CB.

Fig. 223

Take as the pole and OA as the polar axis of a system of

polar coordinates. If we denote OA by 2 a, then

the equation of the circle is p= 2 a cos 6. Let P
be denoted by (p, 6). Now

p=OP=OB-PB.

0B=2aseGe and PB = 0C=2acose.

p = 2 a (sec — cos 0),

p = 2 a tan ^ sin 0.

Fig. 224.— The
Cissoid The locus of this equation is given in Fig. 224.

The curve is known as the cissoid of Diodes.*

* Cissoid (Greek, Kto-o-ds = ivy) means ivy-like. The Greeks considered

only the part of the curve lying within the circle. Diocles was a Greek

mathematician who lived sometime between 217 b.c. and 70 b.c. By means

of this curve, Diocles showed how to construct the side of a cube whose

volume is twice the volume of a given cube. See Ex. 4, p. 388.
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Conchoid of Nicomedes.* A straight line revolves about a

fixed point and meets a fixed straight line MN in the point

Q. From Q a fixed length is laid off on OQ in both direc-

tions. The locus of the two points, P and P', thus determined

is called a conchoid.

Let be the pole and the line OR through perpendicular

to MJSf be the polar axis of a system of polar coordinates

Fig. 225. —The Conchoid

Let (p, 6) be the coordinates of any position of the generating

point P (or P'). Then

p = OP(or OP') = OQ±QP=OBseGe± QP.

But OR and QP are given constants ; call them a and b

respectively. Then

(10) p = asec^±6

is the desired equation of the conchoid.

* Conchoid (Greek, Koyxo? = mussel) means mussel-like. Nicomedes was a

contemporary of Diodes. He invented the conchoid for the purpose of trisect-

ing an angle, which is one of the famous problems of antiquity. This prob-

lem cannot be solved by means of the compass and straightedge alone.

2c
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248. Spiral Curves. A spiral is a curve traced by a point

which revolves about a fixed point called the center, but con-

tinually recedes from or continually approaches the center ac-

cording to some definite law.

The spiral of Archimedes is the locus of a point such that its

radius vector is proportional to its vectorial angle. Therefore

its equation is

(11) p = ke,

where Ic is a constant.*

The form of the equation shows that the locus passes through

the pole, and that the radius vector increases without limit as

the number of revolutions increases without limit. Figure 226

represents a portion of the locus for k = ^j with $ expressed

in degrees.

The hyberbolic or reciprocal spiral is the locus of a point

such that its radius vector is inversely proportional to its vec-

* In this example, and in those that follow, it is usual to express the angle

in radians ; but this is not necessary, since the same result can be obtained by

choosing a different value for A: if d is exi>ressed in degrees.
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torial angle. The equation of the locus is therefore

(12) P=^.

where A; is a constant.

Figure 227 represents a

portion of the graph for

A; == 70 and for positive

values of 6 (expressed in

degrees).

The logarithmic spiral

is the locus of a point ^^^- ^27

such that the logarithm of its radius vector is proportional to

its vectorial angle, i.e.

(13) log p = kO,

where A; is a constant. If the base of the system of logarithms

is b, the equation may be written in the form p = 6*^. Figure

228 represents a portion of this locus when 6 = 3, for A: = y^,
with 6 expressed in degrees.
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EXERCISES

1. Discuss the form of the limagon (7), when
|
A:

|
< 2 a. When

|A:|>2a.

2. Solve the locus problem used to define the lima9on by means of rec-

tangular coordinates, and compare the merits of the two solutions.

3. By taking the line OA (Fig. 223) as the ic-axis and the tangent to

the circle at O as the y-axis, prove that the equation of the cissoid is

2a-x
4. Duplication of a Cube. In the adjoining figure, let MN= a and

MB = 2 a. Draw BA and let it meet the cissoid

in the point D whose ordinate is LD. Prove

that ZZ)3 = 2 OLK If MB = n • a prove that

LD^ = n OL^.

6. If in Fig. 225 the line MN^ is taken as the

a;-axis and the line OBA as the jz-axis, prove that

the equation of the conchoid is

a:V=(y + «)'(&' -2/2).

Compare the merits of this solution with that on

p. 385.

6. Trisection of an angle. Let AOB be the angle to be trisected.

Through a convenient point A on one side OA of the angle draw AB per-

pendicular to OA. Through

B draw a line BC parallel to

OA. From as fixed point,

and AB as fixed line, and

2 . OB as a constant dis-

tance, describe a conchoid

meeting BC in C. Angle

^OC is then \ AOB.

[Hint: E is the mid-point

of Z>C ; then OB = BE = EC. The result then follows from elementary

geometry.]

7. Show that in the conchoid, if

(a) 6 > a, the curve has an oval at the left, as in Fig. 226;

(6) 6 = a, the oval closes up to a point

;

(c) 6 < a, there is no oval and both branches lie to the right of the

point 0.
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8. Draw the parabolic spiral, which is defined by the equation p^ = kd.

Take k = -^^ with 6 in degrees, and use only the positive values of p.

9. Draw the lituus, which is defined by the equation p^ = k/d. Take

A; = 90 with 6 in degrees, and use only the positive values of p.

249. Relation between Rectangular and Polar Coor-

dinates. Take the origin of a system of rectangular axes

as the pole, and the positive half of the a;-axis as the polar

axis, of a system of polar coordinates.

Let (x, y) and (p, 6) be respectively the rectangidar and polar

coordinates of any point P. Then x/p — cos ^, yjp — sin 6.

Hence, we have

I X = p cos e,

I y = p sin e.
(14)

It is here assumed that the coordinates of P are so chosen that

OP — p and angle XOP= 0. This is always possible. If p is

positive, X always has the sign of cos and y the sign of sin $,

ft<=^' -?^
F P

Fig. 229

Conversely, if p is positive, we see from Fig. 229 that

.2 _ ^2 _L „2 gin $ — ^

(16)

x" + y^,

$ = arc tan [t\ cos d = '-
'
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EXERCISES

Transform the following equations into equations in rectangular coordi-

nates. State in each case whether the graph is easier to sketch from the

polar or the rectangular equation.

1. p = 1 - cos 0. 6. p2 sin 2 e = 3. 11. p^ = 6.

2. p=l + sin^. 7. p2cos2^ = 4.
^^ ^2^1

3. p = 4.
8. p2 = cos 2 e.

13. p = a sec d-\- b.

4. pcos^ = 5. I 14. p = 2asec^tan^.
10. p = — •

6. p sin ^ = - 2. e 15. p = 4 cos 2 6.

Transform the following equations into equations in polar coordinates :

16. ^2 + 1/2 = 4 X. 21. xy = 4.

17. (x2 + y2)2 _aj2 _ 2/2. 22. a; cos a 4- y sin a = ;>.

18. X -y = 0. 23. (y2 4- x2 _ 2 a;)2 = x2 -f- y2.

19. 1/2 = 4 X. 24. x3 = ?/2(2_a;).

20. 9 x2 + 4 ?/2 = 36. 25. x2?/2 = (y + 2)2(4 - y^).

MISCELLANEOUS EXERCISES

Sketch the followfving curves

:

1. p = a cos 2 d. 1. p = a cos 6 6.

2. p = a cos 8 d. 8. p = a sin 5 ^.

3. p = a sin 2 ^.

4. p = a sin 3 6.

• 6
9 p = a sin--

h. p = a cos 4 ^.

6. p = a sin 4 ^.
10. p = acos--

Find the points of intersection of the following pairs of curves. Plot

the curves in each case and mark with their respective coordinates the

points of intersection.

11. p == 1 4- cos e,. 14. p = 1 + cos d,

4(1 +cos0)p = 1. 2p = 3.

12. p = 4, 15. p = 2(l -sin^),
pcos^=2. (l+sin^)p=l.

13. p = \/2, ^®- P = cosd,

P = 2 sin 5. P = 1+ 2 cos d.
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Solve the following exercises by the use of polar coordinates :

17. Find the locus of the center of a circle which passes through a

fixed point O and has a radius 2.

18. Prove that if from any point a secant is drawn cutting a circle in

the points P and Q, then OP - OQ is constant for all positions of the

secant.

[Hint. By using equation (2), §246, show that the product of the

roots is constant.]

19. Secants are drawn to a circle through a fixed point on the cir-

cumference. Find the locus of the middle points of their chord segments.

20. Find the locus of the middle points of the focal radii issuing from

one focus of an ellipse
;
parabola ; hyperbola.

21. The focal radii of a parabola are produced a constant length. Find

the locus of their end-points.

22. Through a fixed point on a fixed circle a variable secant OP is

drawn cutting the circle in B. If BP = 3 OB, find the locus of P.



CHAPTER XV

PARAMETRIC EQUATIONS

250. Parametric Equations. As a point P(xj y) moves along

a given curve, the x- and y- coordinates of the point vary. So

do many other quantities connected with this point, as for ex-

ample, in general, its distance OP from the origin, the angle

which OP makes with the aj-axis, its distance from a fixed line,

etc. It is sometimes convenient to express x and y in terms of

one of these variables. This third variable, in terms of which

the variables x and y are expressed, is called a parameter. For

exaonple, we see that the coordinates of any point P{x, y) on

the circle whose center is at the origin and whose radius is r,

can be expressed in the form

(1)
rx = rco

I 1/ = r si

r cos 0,

sin 6,

Fig. 230

where 6 is the angle XOP (Fig. 230). These are then para-

metric equations of the circle. If we eliminate the parameter

6 between these two equations by squaring and adding them,

we obtain the equation 2 _j_ ,,2 _ ^2X -i- y — r
,

which is the rectangular equation of the circle.

392
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Similarly, a pair of parametric equations of the ellipse

(2)

are

(3)

393

^4-^ = 1
a2 62

f X = a cos 6,

1 y = 6 sin 6 ;

for, these values of x and y are seen to satisfy equation (2)

for all values of 6.

The geometric interpretation of equations (3) is important.

In Fig. 231, a geometric construction given in § 226 is used.

Fig. 231

The abscissa of P is equal to the abscissa of Q, i.e. a cos 0, the

ordinate of P is equal to the ordinate of R, i.e. b sin 6. There-

fore the coordinates of P are x = a cos 0, y = b sin 0. The

angle is known as the eccentric angle of the point P. We
should note that is not the angle XOP.
A pair of parametric equations for the hyperbola

(4) ^^-yl=i
^ ^

a^ b^

are

(5) x = a sec 9, y = b tan 9,

for these values of x and y satisfy the equation (4).

It is important to note that a given curve may have as many

sets of parametric equations as we please. For example, para-
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metric equations of a circle may be written in the form

x = a cos t, y = a sin t,

as above ; or they may be written in the form

or in any one of many other forms.

EXERCISES

1. Show that x = t, y =2 — t are parametric equations of a straight

line.

2. Show that x = I pt^, y =pt are a pair of parametric equations of

the parabola y'^ = 2 px.

3. Write two pairs of parametric equations for the line y = x.

4. Prove that ., ,„. „ ,

are parametric equations of a circle.

6. Write a pair of parametric equations for the rectangular hyperbola

a;2 - ?/2 _ ^2,

6. Show that x = Acosd -\- Bsin d, y = Asm 6 — Bcosd are para-

metric equations of a circle.

7. Prove that x = 6 + 4 cos ^, y = — 2 + 3 sin ^ are parametric equa-

tions of an ellipse.

8. Write a pair of parametric equations for the circle

(x - a)2 + (y - 6)2 = r2.

9. Prove that a; = 6 + 4sec^, y=— 2 + 3 tan d are parametric equa-

tions of a hyperbola.

10. Find the equation of the tangent to

X^ f/2

(<^) -^ + 7^ = ^» *^ ^1 = « <^08 ^i» yi = ft sin ^1-

/v2 «f2

(ft) —
o
—

t:;
= 1' at ^1 = « sec 01, yi = 6 tan ^i.

(c) ?/2 = 2px, at xi = i ;)«i2, yi = pti.
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11. Prove that the tangents to y''- = 2px at {^ph^.ph)^ ilPh^.Ph)
meet at the point [^^phti, \p{h + ^2)]-

12. Write the equation of the tangent to y^= 4 ax at xi=

13. Show that

Wli^'

2a_

3a«
y =

3a«2

1 + «3 ' ^ 1+^3

are parametric equations of the curve x^ -{-y^ —Z axy.

14. Show that x = a cos^ e, y = a sin^ d are parametric equations of21 2

the curve x'^ -i- y^ = a^.

15. Find the x- and ^/-equations of the curve whose parametric equa-

tions are X = a (^ — sin d), y = a (1 — cos d).

251. Sketching Loci of Parametric Equations. If we assign

a series of values to the parameter and determine the series of

corresponding pairs of values for x and 2/j we can interpret

these values as the coordinates of points on a curve. Plotting

these points and sketching a curve through them, we have the

graph of the curve whose parametric equations were given.

Example. A pair of parametric equations giving the path of a

body projected horizontally from a height of 400 ft. with a velocity of

10 ft./sec., are x=10t, y = 400 — 16 t^. Sketch the locus.

t 1 2 3 4 5

X 10 20 30 40 50

y 400 884 336 256 144

Y

400

300

800

100

N
\
\\

V

\
1 a s 4 6 6 X

Fig. 232

In the preceding table are given the values of x and y corresponding

to the integral values of t from to 5 inclusive. Plotting these points

we have the graph in Fig. 232.

This curve is of course the same that we should obtain by first elimi-

nating t and then plotting from the equation in x and y.
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252. The Time as Parameter. Suppose a point moves in

a plane. At every instant of time t the point occupies a certain

position (x, y). In other words, the coordinates x and y of the

point P are functions of t, i.e.

,/,x r a; = a function of ty

I y = a function of t.

These equations are then parametric equations of the path

traversed by the point.

Such equations arise frequently in mechanics when it is

desired to describe the motion of a body subject to various

forces. For example, if a body is projected from a point

(0, 0) in a vertical plane at time i = 0, with an initial velocity

Vq, and making an angle a with the horizontal (ic-axis), its

position at the end of t seconds * is given by the equations

{x = tv^ cos a,

[y = tVoSma-}gt%

where, if Vq is measured in ft./sec, gr is a constant approxi-

mately equal to 32.2. The use of these equations of a projectile

will be illustrated in the next article and the exercises follow-

ing it.

EXERCISES

Sketch the following curves from their parametric equations.

1. x = t, 4. X = t'^ - 1, 7. x = t, lo. x = t,

2/ = « + 2.

2. x = r^,

y = t^-\.

5. X = ^2 4. 1,

1

11.

y = t-tK
X = sin d,

y = r. y = z. 8. x = t\ y = cos d.

3. x = s+ 1, 6. x = t, y = t\ 12. x = tan e,

y = s'^.

y-\-
9. x = t^+\,

y = t^^l.

y = sec d.

13. x = \Qt cos SO'', 14. x = 5«,

?/ = 25 + < sin 30° - 16 «2. y = so- 16 «2.

* The resistance of the air being neglected.
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253. The Path of a Projectile in Vacuo. The equations (7)

given in § 252 yield many results of interest regarding the paths of pro-

jectiles. Some of these are given in this article and others are found in

the exercises below. They are, of course, only approximations to the

actual behavior of a projectile, in view of the fact that the resistance of

the air has been neglected *

By eliminating t between the equations (7), § 252, we obtain the equa-

tion of the path in rectangular coordinates (x, y) :

(8) y = X tan a — gx^

Fig. 233

The path is, therefore, a parabola, with a vertical axis. The vertex

of the parabola is at the point (Fig. 233)

(9) \m 2 a,
<''''''' '

^9

The greatest height above the horizontal is

(10) H =

The complete range, i.e. the distance from O to the point where the

projectile again meets the horizontal, is found as follows :

If in (7) we place y = 0, we find t = and

t = 2{vjfj) sin a.

The value of x for the second value of t found is the desired range B, i.e.

.2

B ^ sin 2 a.

g

This result could also have been found by placing y = in (8) and solv-

ing for X. Why ?

* For the theoretical and practical discussion of the flight of actual projec-

tiles (whose motion is 'appreciably affected by the resistance of the air) the

student is referred to Alger, The Groundwork of Naval Gunnery, or

External Ballistics.
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EXERCISES

1. A gun is fired at an elevation of SO'^. Find the range if the muzzle

velocity of the shell is 1000 ft./sec. Aiis. About 5 mi.

2. What is the greatest height reached by the projectile in Ex. 1 ?

How long is its time of flight ?

3. What must be the initial velocity of a baseball thrown at an angle

of 45° in order that it may travel 200 ft. before hitting the ground ?

4. A stone is thrown from a tower 100 ft. high, with an angular ele-

vation of 45° and an initial velocity of 64 ft./sec. How far from the foot

of the tower will the stone hit the ground ?

6. The great pyramid of Cheops is 450 ft. high. Its base is a square

746 ft. on a side. A ball is thrown upwards from the top in a direction

making an angle of 20° with the horizontal and with the velocity of

80 ft./sec. Will the ball clear the base of the pyramid ?

6. Prove that for a given initial angle of elevation the range of a pro-

jectile is proportional to the square of the initial velocity.

7. Prove that for a given initial velocity the maximum range is

obtained when the angle of elevation is 45°.

8. Prove that with the notation of § 253, the time of flight of a pro-

jectile from to (x, y) is (x/vo) sec a ; from Oto (J?, 0) is (2 Vo/g) sin a.

9. Prove that the paths of a projectile with given vq, but varying a,

have the same directrix.

10. Prove that the coordinates of the focus of the path of a projectile

are

(

vq^ sin 2 a — ih)^ cos 2 a\

2sr ' 2g )'

Hence show that the locus of the foci of all paths in a given vertical plane

with the same vo is a circle with center at 0.

11. Prove that the parabola of maximum range has its focus on the

avaxis.

12. Prove that the locus of the vertices of the paths with given "yo is

an arc of an ellipse.

13. Prove that the locus of the vertices of the paths with a given a.

and a varying vo is a straight line.

14. Prove that the locus of the foci of the paths with a given a and a

varying vo is a straight line.
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H

^

254. Locus Problems. Parametric equations of a curve

are sometimes much more easily obtained and easier to work

with than either the rectangular or polar equations. The

following problems illustrate some

of the methods that may be em-

ployed.

Example 1. A line of fixed length

moves so that its ends always remain on

tlie coordinate axes. Find the locus gen-

erated by any point of the line.

Call the point whose locus is desired

P(x, y). Since the line is of fixed length,

call the segments into which P divides it,

x = a cosd^ y=b sin d.

Example 2.

a fixed line.

Take for origin the point O where the moving point P touches the

fixed line. If r is the radius of the circle and the angle PCD (Fig. 235)

is 6 radians, then PD = rsind, DC = r cos 6 and OB = arc BP = rd.

Fig. 234

a and b (Fig. 234). Then
Therefore the locus of P is an ellipse (§ 250).

Find the locus of a point P on a circle which rolls along

Fig. 235

Now if P is denoted by the coordinates (aj, y),

x= 0A= OB- AB= OB- PD = rd- r sine = r(d- sin d),

y = APz=BC- DC = r-r cos d = r{l- cos d).

Therefore

ni\ {x = r(6— sin^),

\y = r(l — cos d)

are parametric equations of the curve traced by the point P. This curve

is known as the cycloid.
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Example 3. Find the locus of a point P on a circle of radius a which

rolls on the inside of a circle of radius 4 a.

Take the center of the fixed circle as the origin and let the x-axis pass

through a point M where the moving point P touches the large circle.

Let angle MOB = d radians. Now
we have arc PB = arc MB = 4 ad

and arc PB = a x angle PCB.
Therefore

a X angle PCB = 4 ad,

or angle PCB = 4 ^.

But

Z OCD + ZDCP-^Z PCB = T.

Therefore

|-0 + Z2)CP+4d = T,

i.e. ZDCP=--Se.

Fig. 236 Now if the point P is denoted by

{x, y) we have

x = OE=OD-\- DE = OD-\- FP = OCcose + CP&ml--Z e\

= 3 a cos ^ + a cos 3 ^ = 4 a cos* ^,*

y = EP=DG-'FC= OC sine - CPcosl--Se\

= 3 a sin ^ — a sin 3 ^ = 4 a sin* ^ ;
that is,

(12) a: = 4acos3^, y = 4a8in^0.

This curve is called the four-cusped hypocycloid.

Example 4. P8P' is a double ordinate of an ellipse
; Q is any point

on the curve. If QP, QP' meet the x-axis in O and 0', respectively,

prove that CO • CO' = a^,where C is the center of the ellipse.

Let P be (a cos ^i, ft sin di), then P' is (acos^i, — ftsin^i). Let Q
be (a cos 6, b sin d). The equation of line PQ is

y " sin a = —^ -(X — a cos a)
a(cos^i — cos^)

* Prove that cos 3 ^ = cos (2 + ^) = 4 coss — 3 cos ^,

sin 30 = sin (2 + ^) = 3sin0— 4 8in«tf.
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and its x intercept {i.e. CO) is

a(cos 6 sin d^ — sin 6 cos 6i)

sin d — sin di

Similarly CO' is
«( - cos ^ sin ^i - sin cos gQ

,

sin ^ + sin di

The product CO • CO' gives a"^.

EXERCISES

1. A line of fixed length 2 a moves with its ends always remaining on

the coordinate axes. Find the locus of the mid-point of the line.

2. Find the locus of the middle points of chords of an ellipse drawn

through the positive end of the minor axis.

3. Find the locus of a point P' on the radius CP of the cycloid (Fig.

235) if CP' = b and b<r.

4. The same as Ex. 3, except & > r.

6. A circle of radius r rolls on the inside of a circle of radius a.

Find the locus of a point P on the moving circle.

a — r

Ans. The hypocycloid

X = (a — r) cos d -{- r cos
r

a — r
= (a — r) sin ^ — r sin

—-—

<

Ans. The epicycloid

X = (a -\- r) cos 6 — r cos

y = {a -h r) sin ^ — r sin

where 6 is the same as in Example 3, § 254.

6. A circle of radius r rolls on the outside of a circle of radius a.

Find the locus of a point P on the moving circle.

a + r

a + r

—re,
where 6 is the same as in in Example 3, § 254.

7. The area of the triangle inscribed in an ellipse, if ^i, ^2* ^3 are the

eccentric angles of the vertices, is

\ ah [sin (^2 — ^3) + sin (^3 — ^1) + sin (^1 — ^2)]

^-2 ah sin ^2ii_^ sin h=Jl sin ^J-ZLb,
2 2 2

8. The coordinates of one extremity of a diameter of an ellipse are

(a cos ^1, ft sin ^1). Show that the coordinates of one extremity of the

conjugate diameter are (— a sin ^1, h cos ^1).

2d



PART IV. GENERAL ALGEBRAIC METHODS
THE GENERAL POLYNOMIAL FUNCTION

CHAPTER XVI

MISCELLANEOUS ALGEBRAIC METHODS

255. The Need of other Methods. We have hitherto con-

sidered special functions such as a;2, sin ic, log^QX, or special

types of functions such as mx -{- h, ax^ + bx -{-c, log„ x, a'' ;
and

we have studied their geometric and other applications. The

study of more general types of functions, for example, the

general polynomial of degree n,

a^x"" + a^_iX'^~^ -h h «i^ + «o)

of which mx + h, ax^- -f- 6a3 -f- c, ay? + bx^ -\- cx^- d are special

types, requires more powerful methods. Some of these we

propose to consider in the present and the succeeding chapters*

256. Technique of Polynomials. We shall first recall the

technique of the addition and multiplication of polynomials.

We begin by noting that a polynomial

can be completely represented by so called detached coeffi-

cients, as follows

:

« ^ ^ «

the place of each coefficient in this expression indicating the

power of X to which it belongs. Thus, for example,

2-316
402
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represents the polynomial 2oi:^ — Sx^ + x-\-6; and

10 0-1
represents the polynominal x^ — 1.*

To add two or more polynomials we need merely add the

coefficients of like powers of x. Thus, the sum of x"^ — l,x*-\-

2s(r^-\-4:X^ + Sx-\-5, and 2a^ — 5x'^-\-x-\-lis given by

10-1
12 4 3 5

2-5 1 1

1 4 4 5=a;* + 4a^-f4a; + 5.

The analogy of this process with that of adding a column of

numbers may be noted.

The product of two polynomials A and B is obtained by

multiplying A by each term of B and adding the results.

Why ? The multiplication of two polynomials by the method

of detached coefficients is also quite analogous to the familiar

method of multiplying two integers. Thus the product of

2 a^ -\- Sx"^ — x —2 by aj2 + a; + 4 is given by

23 -1 -2x114
2 3-1-2

2 3-1-2
8 12-4-8

2 5 10 9-6 -8=2a^-\-5x'-\-10a^-\-9x^-6x-S.

The student should convince himself, by multiplying these

polynomials in the ordinary way, that the above method is

indeed valid.

This method of representing polynomials will seem very natural, if we
note the analogy with the familiar method of representing integers. The
number 217 is simply a short way of writing 2 x 102 + 1 x 10 + 7, i.e. the value

of the polynomial 2z^-{-x + 7, when x = 10. We have, therefore, been famil-

iar with the method of detached coefficients from the time when we first

learned to write numbers.
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257. The Division Transformation. A polynomial B is

said to be a factor of a polynomial A, if there exists a poly-

nomial Q such that A = BQ. A is then said to be divisible

by B. If no such polynomial Q exists, and if the degree of B
is less than that of A, we may always determine polynomials

Q and E, such that

(1) A = BQ-\-E.

Furthermore, the remainder R can always be so determined

that its degree is less than the degree of B.

The process whereby a given polynominal A is expressed

in terms of another polynomial B in the form (1), i.e. the

process of finding Q and R, when A and B are given, is

called the division transformation. That it is always pos-

sible to find polynomials Q and R, if the degree of B is

less than that of A, will be clear from the consideration of

the following example.

Example. Given A = 2x* + 5x^— 'Jx'^ + 12x — 5 and B = x^-10x
+ 8 to find a polynomial Q such that ^ — J5^ is a polynomial of degree

less than that of B.

Since the term of highest degree in J. is 2 x* and that in B is x^, it ap-

pears that A — 2 x^B can contain no term of degree higher than 3. In

fact, we find A — 2 x^B = 25 x^ — 23 x^ -f 12 x — 5. Similarly, since the

term of highest degree in ^ — 2 x^B is 25 x^, we see that the expression

{A — 2x^B)— 25 xB can contain no term of degree higher than 2. By
continuing this process we shall arrive at a polynomial which is of degree

less than that of B. The work may be arranged as follows.

^=2x* + 6 x8- 7x2-1- 12x

J5. 2x2 = 2x4 -20x3 + 16x2

x2-10x + 8 = 5
2 x2 + 25 X 4- 227

^-5.2x2 =
J5-25x =

25x8- 23x2-}- 12X-6
25x8-250x2+ 200 X

^-^(2x2 + 25x) =
J? . 227 =

?(2x2 4-25x + 227) =

227x2- 188X-5
227x2-2270x+1816

2082x-1821 = 7
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If the meaning of each step in the process is followed by means of the

expressions written at the left,* it will be seen that the process has deter-

mined a polynomial
^ = 2^^ + 23x + 227

such that A— BQ = B,

where B is of degree less than that of B. The nature of the process

shows that finally such a polynomial B will always be reached.

258. Remarks on the Division Transformation. While

the process discussed in the last article is known as the

division transformatioyi, it is not a process of division. Only

if we take a further step and divide both members of the

identity (1) (§ 257) by B, to obtain

(2) |=0 + |,

do we really divide A by B. The importance of this distinction

lies in the fact that the relation (1) as derived above is valid

without distinction for all values of the variable x involved.

For in deriving the relation we made use only of the opera-

tions of multiplication and subtraction. However, the relation

(2) becomes meaningless for all values of x for which 5 = 0.

We assumed in deriving the relation (1) that the degree

of B was less than that of A. This is indeed necessary if Q is

to be a proper polynomial. However, if the degree of B is

equal to that of A, the same process will lead to a relation

(3) A = B'q-\-R,

where g is a constant. If the degree of B is greater than that

of A, we may obviously write the trivial relation

(4) A=B'()^A
where A equals R and is by hypothesis of lower degree than B.

If we consider a constant as a poljoiomial of degree 0, the last

* These expressions are not of course a necessary part of the process.

They are given here only to facilitate understanding.
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two cases may be included in the form (1). Our theorem then

takes the general form

Given any two polynomials A and B of degrees greater than 0,

the7i polynomials Q and R can always he found such that for all

values of the variable we have A = BQ -{- R where R is either

zero or of degree less than that of B.

Moreover, the transformation of A to the form BQ-\- R is

unique, i.e. there exist just one polynomial Q and one poly-

nomial R satisfying the conditions of the theorem.

For, suppose there were a second pair, for example Q' and

R'. We should then have BQ+ R = B'Q' + R', or B{Q - Q')

= R' — R. But R' — R is either zero or of degree less than

that of B, while B(Q— Q') is either zero or degree equal to

or greater than that of B. Hence both are equal to zero and

R = R', Q=Q'.

EXERCISES

1. Add the following polynomials by means of detached coefficients :

(a) 2ic2 + 7x + 1, 5a;2 + 2, 3x3 + 4x-8.
(6) 6 «2 + 5 ( + 1, 9 <2 + 8 « + 3, 6 «3 + 2 « + 1.

(c) ay^ -\- by + c, 2 ay^ + 3by + i, 3 ay^ + 6by + 7 c.

(d) 4 a2 -f 3 a + 2, 6 aM- 1, 4 a2 + 2 a + 3, 2 a2 + 6 a.

2. Perform the following multiplications by means of detached coeffi-

cients :

(a) «3 + 2x2 + X + 3 by 2 X + 1. (c) a* + 1 by a'^ + 1.

(b) x8 + 3x2 + 4 by x3 + X + 2. {d) y^ + 1 y + \2\)y y^ + 3y + 2.

3. In each of the cases below transform A into the form BQ ->r B,

where B is of degree less than B. Also write down the corresponding

form for A/B. Detached coefficients may be used to advantage.

(a) ^ = 6x4 4- 7 x3 - 3 x2 - 24 X - 20, B = 3 x2 + X - 6.

(6) ^=3x4 + 2x3-32x2-66x-35, £ = x2-2x-7.
(c) J[ = 2 x6 + 5 x8 + 13 x2 + 2 X, 5 = x2 -f 2 X + 4.

(d) ^ = 4x7-^3x^- 19x* + 2x3-4x2-4x4-7, B = x8-x-6.
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4. Determine m and n so that k* — moc^ -^-x"^ - nx + \ may be exactly-

divisible by a;2 + 2 X + 1-

6. Prove the following propositions :

(a) If we multiply the dividend A by any constant as k{k ^ 0), we

multiply the quotient and the remainder by k.

(6) If we multiply the divisor by A; (A; ^t 0), we divide the quotient by

k but leave the remainder unchanged.

(c) If we multiply both dividend and divisor by k{k ^ 0), we multiply

the remainder by k but leave the quotient unchanged.

259. The Highest Common Factor of two Polynomials.

Two polynomials A and B may or may not have a common

factor of degree greater than 0, i.e. a polynomial F (of degree

greater than 0) may or may not exist such that A = FQ^

B = FQ' where Q and Q' are also polynomials. If no such

polynomial F of degree greater than exists, then A and B
are said to be prime to each other. If, on the other hand,

they have a common factor of degree greater than 0, the one of

the highest degree is called the highest common factor (H. C. F.).

Theorem 1. If A and B are polynomials with a common

factor and M and N are any two polyyiomials, then any common

factor ofA and B is a factor of AM-\- BN.

For let F be any common factor of A and B. Then we

have A=::FQ and B=FQ'. Therefore

AM-\- BN= F(QM+ Q'N),

which shows that i^ is a factor of AM+ BN.

Theorem 2. If A, B, Q, R are polyyiomials such that

A = BQ-\- B, the common factors of A and B are the same

as the common factors ofB and R.

For, by Theorem 1, any common factor of B and i2 is a

factor of A and hence a common factor of A and B. More-

over, from the relation A — BQ = R and the last theorem, any

common factor of A and B is a fac- or of B and R.
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Successive applications of the division transformation there-

fore enable us to find the H. C. F. of two polynomials A and B
as follows

:

Using the division transformation on A and B, we may

™*^ A = BQ + B,

where the degree of R is less than that of B. li B = 0, B is

the H. C. F. If 72 is a constant different from zero, then A
and B have no H. C. F. Why ? If the degree of B is at least

equal to 1, we may use the division transformation on B and B
to obtain B = BQ,-hB„

where Bi is of degree less than B. If Bi = then B is the

H. C. F. of ^ and B. If Bi is a constant different from zero,

A and B are prime to each other. If B^ is of degree at least

equal to 1, proceed as before, expressing B in the form

B = B1Q2 -{- B2.

This process may be continued until a remainder B^ is

reached which is either zero, or a constant different from zero.

If B^ = 0, then B,^_i is the H. C. F. sought. If B^ is a constant

different from zero, then A and B are prime to each other.

Example 1. Find the H.C. F. of 4a:8_3a;2+7a;-l and 2 a;2-3a;-|-l.

A = ^x^ -Sx'^ + I x-1
4a;8-6x2 + 2 x

2x^-3x + l = B
2x + ^ = Q

3 x2 + 6 x-1
3x2 -f a; + |

Replace Bhj x — ^% — E'.

B = 2x^-3 x + l \x-j^-g=B
2x:2-\%x

\
2x-\i

-nx + VA

Therefore A and B are prime to each other.
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Example 2. Find the H. C. F. of x^ - 2 x2 -f x + 4 and 3 x^ -f 8 x2 +
3x-2.

The work may be arranged as follows. Since the H. C. F. of two

polynomials is not altered in any essential way by multiplying or dividing

either of them by any constant (^^ 0), we can avoid fractional coefficients.

X3

X3

-2x2 + x-f4
X

-2x2
-2x2

+ 2x + 4

4-2

21 2x + 2

X4-1

3x3 4- 8x2 4- 3 X- 2

3x3 — 6x^ + 3 x + 12

14x2 -14 14

X2 -1
X2 + x

— X -1
— X -1

Therefore the H. C. F. is x 4- 1-

EXERCISES

Find the H. C. F. of each of the following pairs of expressions :

(a)

(&)

(c)

(d)

(/)

x3 4-2x2-13x+ 10, x3 + x2- 10x4-8.

3x* 4- 5x2 + 2, x6 - 4 X* 4- 5 x2 - 2.

a;8_2x2-22x + 8, x2 -6x4- 2.

a3 + 3 a2 - 3 a - 5, aa a' 4- 3 a 4- 5.

y^ — yf^ — y + i? y'^ -\- y + i-

&4 + 5.3 ^ 6 ^-2 _^ 5 5 ^. 5^ ^5 4. 4 53 _^ 52 _

1 4- x-x2- 5x3 + 4xS 1-4x84-3x4.
6 6 4-1.

{h) 4x4-5x3 + x + 1,3x4-4x3+1.
(i) a^ 4- a3 + a 4- 1, a2 + a + 1.

(j) x^>-l,x-l.

2. Prove that, if the coefficients of two polynomials are rational (or

real), the coefficients of the H. C. F. are rational (or real).

3. If F is a factor of A but not of B, how does the H. C. F. of ^4 and

FB compare with the H. C. F. of A and ^ ? In introducing and suppress-

ing factors during the process of division, what precaution must be taken

and why ?

260. Functional Notation. We have already used special

notations to represent special functions. Thus sin, cos, tan,

log, etc. are special notations with which we are familiar. We
shall now introduce a notation that is more general, for it is
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applicable to all kinds of functions. We shall use the symbols

f{x)j F(x), (t>{x), — to represent various functions of x, and

can then speak of the "/-function," " (^-function," etc., just as

we speak of the sine function, logarithmic function, etc.

Moreover, such a notation can be used to represent the value

of the function in question for a given value of the variable.

Thus, if f(x) is used to represent the function x^ -{- 2x — 1, the

symbol /(2) denotes the value of this function when x = 2

(just as sin (7r/2) means the value of sin x, when x = 7r/2) ; i.e.

/(2) =22 + 2. 2-1 = 7.

Similarly, with the meaning just given tof(x), we should have

f(x -}-h) = {x + hy -^2ix + h)- 1.

It should be noted that, when a certain function is called

f(x), then, throughout any discussion where this function is

used, f(x) always means that particular function and no other.

EXERCISES

1. Given/(x) = 3x2 + 2a;- 4, fiiid/(2),/(^),/(0),/(a; + 1/x).

2. Given 0(x) = x/(x - 1), find 0(2), (f>(x + h), 0(1 - x), 0(10).

3. Given F{x) = e* + e-^ find F(0), F(l).

4. Given/(x) = (x - l)/(a; + 1), prove that

6. If 0(x + y) = (t>{x) + 0(j/), show that 0(3 x) = 3 0(a;).

6. Given f(x) = 2 x Vl — x^, prove that

/(sinx) =/(cosx) =sin2x.

1
X

Given /(x) = -, find the value of /Ml+^V

X

8. Given ^(x) = e* + e"*, prove that

e{x^y)d{x-y) =^(2x) -}-^(2y).

9. Express tlie fact that the volume of a sphere is a function of its radius.
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10. Given F {x) = (x- \/x){x'^ - \/x'^){xJ^ - \/x?), prove that

F{z) = -F{\/z),

11. Given that/(w) = n !,* prove that (n + 1) f{n) =f(n + 1).

12. Given that/(.7;)=a;2-f-2, find/[/(x)].

13. Given /(x) = sinx, find/(7r/2),/(7r/3), /(tt).

14. Given /(x) = sin x and <f)(x) = cos x, prove that

(«) lf(x)T + [0(^)]-^ - 1. (d) fix) = «/,(7r/2 - X).

(b) f(x) - 0(a-) = tan X. (e) /(- x) = -/(x).

(c) /(.r + 2/) =f(x) cf>(y) +f(y) <p{x). (/) 0(x) = 0( - x).

16. If /(x) = loga X, show that

(a) / (a;) + / (y) =f{xy). (c) /(xA) + f(y/x) = 0.

(6) /(x") = n/(x).

16. What functions may/(x) represent when

(a) fix + y) =f(ix)f(y). (c) /(x") = n/(x).

(6) /(x+ 2/) =/(x) +/(2/). (d)
/(^^

=/(2/) -/(x).

261. The Remainder Theorem. If a polynomial f(x) is

divided by x— a, the remainder isf(a).

If f(x) is the dividend, a; — a is the divisor, Q(x) the

quotient, and R the remainder, then

(5) f{x)=(x-a)Q(x)-^E

where B, since it is of lower degree than x — a, does not in-

volve X at all, i. e. E has the same value for all values of x.

Since the values of the two members of this identity are

equal to each other for all values of x, we have for the par-

ticular value X = a. ^/ s r>
J {a) = M.

262. Factor Theorem. If f(x) is a polynomial and a is a

number such that f(a) = 0, then x — a is a factor off(x).

The proof of this theorem is left as an exercise.

*n! = l-2.3.4 •... • w, that is, 2! =2, 3! =6, 4! =24, ....



412 MATHEMATICAL ANALYSIS [XVI, § 262

EXERCISES

By use of the remainder theorem find the remainder when

1. x^ — 2 x'^ + 3 is divided by a; — 2.

2. a:i3 _ 45 a:i2 + 26 x^ + 12 is divided by a; - 1.

3. a:i2 + 1 is divided by jc+ l ; by a; — 1.

4. Show that — 2 is a root of the equation 2 x^ + 3 a;^ — 4a; — 4 = 0.

5. Show that a;'* + «" is divisible by x + a if w is odd.

6. Show that x" + a" is not divisible by x + a if n is even.

7. By means of the remainder theorem find k so that x^-\- kx^-\-2x +^
may be exactly divisible by a; — 2.

8. Find the polynomial in x of the second degree which vanishes when
x= I and when a; = 2, and which assumes the value 10 when x = 3.

263. Synthetic Division. We shall proceed to explain a

simple method of performing the division transformation

when the divisor has the form x — k, i.e. when the divisor is a

binomial of the first degree in which the leading coefficient is 1.

Let the given polynomial be

a„aj" + «„-iaJ"~^ + a^-2X"'-^ + ••• + OjX + a^

and the divisor x — k.

The ordinary process of long division leads to

X — k

a,.a;^— a„A;.r"-i ^«^"~^ + (^«n + ^n-i)^""^

(ka,+ ft^-Qa;"-^ - k(ka^+ a.,-i)x^-^

It is now not difficult to see that

(a) the first coefficient in the quotient is a„, i.e. the coeffi-

cient of the leading term in the dividend

;

(b) the second coefficient in the quotient is obtained by

multiplying the first coefficient of the quotient by k and adding

to it the second coefficient of the dividend :
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(c) the third coefficient of the quotient is obtained by mul-

tiplying the second coefficient of the quotient by k and adding

to it the second coefficient of the dividend.

We may then arrange the work as follows

:

a„ a„_i a„_2 «„-3 - 1^

or„ ka^ -f a„_i k{ka„ + a„_i) + a„_2 -

Here the first line contains the coefficients of the dividend

in order and the third line gives the coefficients of the quotient

and the remainder in order. Every number in the third line,

after the first, is obtained by multiplying the preceding num-

ber by k and adding to it the next number in the first line.

Example 1. By synthetic division, find the quotient and the re-

mainder when X*— 2ic3-f-x2 + 3a;— 2is divided by cc + 2.

Solution : 1-21 3—21 — 2

- 2 8 - 18 30

1 _ 4 9 - 15 28

Hence the quotient is x^ — 4 ic^ + 9 x — 15 and the remainder is 28.

Example 2. If/(x) = 2x* +3x3+7x2-}- 14x + 20, find/(-3).

2 3 7 14 201-3
-6 9 -48 102

2 -3 16 -34 |122=/(-3). Ans.

EXERCISES

In the following exercises use synthetic division :

1. Find the remainder when x^ + 3 x^ — 6 x + 2 is divided by x — 2.

2. Find the remainder and the quotient when x* — 3x'^ + 2x + 3 is

divided by x + 3.

3. Show that 3 is a root of the equation x^ - 4 x^ - 17 x + 60 = 0.

4. Find k so that 3 is a root of the equation x'* - 3 x^ + A:x + 1 = 0.

5. Is 5 a root of the equation x^ — x^ + 7 = ?
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264. Properties of Integers. We have already noticed

(ftn.j p. 403) that the familiar method of writing an integer

greater than 9 represents it as the value of a polynomial.

Integers and polynomials, therefore, have many properties in

common. We may, for example, gain an insight into the reason

for the rules of arithmetic used in adding a column of figures

or in finding the product of two integers by comparing these

rules with the technique of adding and multiplying polynomials

discussed in § 256 *. We shall proceed to discuss some of the

properties of integers relating to divisibility, etc., which are

valuable in our everyday use of numbers.

265. Prime and Composite Numbers. An integer greater

than 1 that is divisible by no integer except itself and 1 is called a prime

number or simply a prime. Thus 2, 3, 5, 7, 13 are prime numbers. Any
integer (> 1) not a prime is called a composite number. Any composite

number is the product of two or more primes, thus 6 = 2-3, 100 = 2 • 2 •

5 . 5 = 22 . 5^. Any composite number 7i may be resolved into its prime

factors in one and only one way. When resolved it has the form

n = j?i*ij92"* •••Pfc"*- When a number has been resolved into its prime

factors any question regarding its divisibility is readily answered by the

following theorem.

A number a is divisible by a number b if and only if every prime factor

of b occurs in a to at least as high a power as it occurs in b. This

theorem follows readily from exercises 15 and 17 below. The proof is

left to the student. As an illustration, if a = 2 • 3^ • 17^ • 37 and 6 =
2 • 32 . 17 we recognize at once that a is divisible by b and that the quo-

tient is 3 • 17 • 37. If, on the other hand, b were 2^ . 3^ • 17 then a would

not be divisible by &.

The common factors of two integers are also readily found if the num-

bers have been resolved into their prime factors. Why ? Two integers

which have no common factor (> 1) are said to be prime to each other.

The notion of prime numbers and the investigation of their properties

is very ancient and to this day some of the most difficult problems of

advanced mathematics relate to this field. Some of the properties are

quite elementary, however, and have been listed below in exercises.

* Carrying this comparison out in detail forms a valuable exercise. The
familiar process of "carrying" a digit from one column to the next is about

the only thing that requires special investigation.
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EXERCISES

1. Prove that if a and h are both divisible by w, then a-\-h and a—b
are divisible by n and a • 6 is divisible by n^. Is a similar theorem true

of polynomials ?

2. Prove that a product of any number of integers is divisible by n if

one of the integers is divisible by n. Is a similar theorem true of poly-

nomials ?

3. If c = a & is divisible by «, must either a or 6 be divisible by n ?

4. Prove that if a number a leaves a remainder r when divided by &,

then the number obtained by adding to a any multiple of h will leave the

same remainder.

5. Prove that if the last digit on the right of an integer is even, the

integer is divisible by 2.

6. Prove that if the number formed by the last two digits of an

integer is divisible by 4, then the number is divisible by 4.

7. Prove that if the number formed by the last three digits of an

integer is divisible by 8, then the integer is divisible by 8.

8. Prove that if the last digit of an integer is or 5 then the integer

is divisible by 5.

9. Prove that if the sum of the digits of an integer is divisible by 3

(or 9) then the integer is divisible by 3 (or 9).

10. Prove that if the sum of the first, third, fifth, etc. digits of an

integer is equal to the sum of the second, fourth, etc., the number is

divisible by 11.

11. If the sum of the digits of an even number is divisible by 3, the

number itself is divisible by 6.

12. Determine without performing the division whether the following

numbers are divisible by 2, 3, 4, 5, 6, 8, 9, 11.

(a) 2562. (c) 123453. (e) 127898712. {g) 111111111111.

(6) 12345. {d) 2673. (/) 7325 x 8931. Qi) 11111111112.

13. How would you recognize that a number is divisible by 45 ?

14. Prove that if the product « • & is divisible by a prime number p,

either a is divisible by p or 6 is divisible by p. Is a similar theorem true

for polynomials ?

15. Prove that if a number c is a factor of ah and is prime to a, it

must be a factor of h. Is a similar theorem true for polynomials ?

16. Prove that the quotients of two numbers by their H. C. F. are two

numbers prime to each other. Is a similar theorem true for polynomials ?
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17. Show that if a number is divisible by each of two numbers which

are prime to each other, it is divisible by their product. Is a similar theo-

rem true for polynomials ?

18. Show that the product of two numbers is equal to the product of

their H. C. F. by their L. C. M. Is a similar theorem true of polynomials ?

19. Prove that the number of primes is unlimited.

[Hint. Suppose that the theorem were not true and that p were the

greatest prime. Let pi, /)2, P3, •••, Pn-i be the set of all primes less than p
and consider the number

PiP'zPz ' Pn-iP-^ 1-

This number is not divisible by any of the primes pi, p2, •••, p. The rest

of the proof should be obvious. This proof was first given by Euclid.]

20. By trying successive primes 2, 3, 5, 7, •••, determine whetlier or not

1009 and 1007 are primes. In this case we may stop with the prime 31.

Wiiy ? Ans. 1009 is prime.

• 21. Resolve into prime factors the numbers 604800 and 12250.

22. Is the number 2^31253 a perfect square ? Is it a perfect cube ?

23. Show that the relation ah — cd = 1, where a, &, c, rf, represent in-

tegers, is not possible unless a and c are prime to each other.

24. Two consecutive integers are always prime to each other. Is this

true also of any two numbers differing by 7 ?

25. What is the smallest cube of masonry that can be constructed of

bricks 8x3x2 inches ? It is assumed that the bricks are placed so that

any two equal sides are parallel.

266. Partial Fractions, in certain problems it is sometimes found

necessary to express a fraction in which the numerator and denominator

are polynomials in one variable as the sum of several fractions each of

which has a linear or at most a quadratic function in the denominator.

In what follows it will always be assumed that the given fraction is a

proper fraction^ i.e. a fraction in which the degree of the numerator is less

than that of the denominator. Any fraction which is not proper can be

written as the sum of a polynomial and a proper fraction. Therefore our

problem may be stated as follows : To express a proper fraction as the

sum of several proper fractions.

The method of approach is to assume that the fraction can be expressed

in the desired form and then seek to determine the numerators which in

the assumed form are left undetermined. Four distinct cases arise.
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Case I. When the denominator can be resolved into factors of the first

degree all of which are real and distinct.

Example 1. Resolve into partial fractions

9x^ -a;-2
x^ — X

The sum of the three fractions

X X —\ X -\-l

will give a fraction whose denominator is x^ — x. We therefore try tc

determine A^ B, C so that

(Q)
9x^-x-2 _A B C

X^ — X X X — 1 x -\-

1

Clearing of fractions we have

(7) 9x-2-x-2 = A{x^ - 1) + B{x^ { x) -{- C {x'^ - x)

.

Since (7) is to be true for all values of x, we seek values of A, B, O, such

that the coefficients of like powers of x will be equal, i.e. such that

A + B-\- C^9, B-C = -l, -A =-2.

Solving these equations, we find A = 2, B = S, (7 = 4. Hence

9a;2-a;-2_2 3 , 4

X^ — X x X—1 X -\- I

Case II. When the denominator can be resolved into real linear fac-

tors some of which are repeated.

Example 2. Resolve into partial fractions

2 a;2 - X + 2

x(x-iy
The sum of the fractions

A^ B , C
X x-\ {X- 1)2

will give a fraction whose denominator is x{x — l)^. Therefore we shall

try to determine A, B, C so that

2x^-x + 2^A^ B
,

C
X{X - 1)2 X X-l {X- 1)2

Clearing of fractions, we have

2x2-3-4-2 = A{x- 1)2 J^ Bx{x- 1)+ Cx.

Equating the coefficients of like powers of x, we have

A-^B = 2, -2A-B-\-C = -\, A = 2.

2e
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Solving for A, B, O, we find ^ = 2, B = 0, C = 3. Hence

2x2-a;+2_2 3

x(a'-l)2 X, (a;-l)2

The assumptions to be made under Cases I and II are contained in the

following rules.

(1) For every unrepealed factor x— a of the denominator^ assume a

fraction of the form A/{x — a).

(2) For every repeated factor {x — a)* of the denominator^ assume a

sum offractions of the form

A\ ^ A2 _^ ,,,
I

Ak
X — a (x— a)2 (x — ay

Case III. W?ien the denominator contains quadratic factors which

are not repeated.

Example 3. Resolve into partial fractions

5 x2 + 4 X + 3

(X+1)(X2 + 1)'

Let 5 x2 + 4 X + 3 ^ A Bx + G
(x+ l)(x2+ 1) x + 1 x-^+ 1

'

Clearing of fractions, we have

5 a;-2 + 4 X + 3 = A(x^ +1) -{-(Bx+ C)(x + 1)

= Ax^ + A -{- Bx'^ -^ Bx + Cx + a
Equating coefficients,

A-^B=o, B+C = 4,A+C=S.

Therefore A = 2, B = S, 0=1. Hence

5x^ + 4x+3 ^ 2 . 3x4-1
(x+l)(x2 + l) x+1 X24-1'

Case IV. When the denominator contains quadratic factors which

are repeated.

Example. Resolve into partial fractions

3 x^ + x'^ + 8 x'-! + X + 2

X(X2 + 1)2

Let 3 x^ + x^ + 8 x2 + a; + 2 ^A Bx + C Dx + E
x(x2 +1)2 X x2 + 1 (x2 -f

1)^'

Then,

3 x* + x8 + 8 x2 + X + 2 = .4(x2 + l)a + (^x + C)x(x2 + 1) + {Dx + E)x

= ^x* + 2 ^x2 + A + Bx^ + Cx3 + ^x2 + Cx + Z)x2 + Ex.
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Equating coefi&cients we have

^ + JB = 3, C=l, 2^ + 5 + i) = 8, C+E = l, A = 2.

Hence, A = 2, B = 1, 0=1, D = 3, E = 0.

Therefore,
^^^ ^ x^ + Sx'^ + x + 2 ^2 x±l_ Sx

x(x^+iy^ X a:2 -f 1 (a;2 + 1)2

The assumptions to be made in Cases III and IV are contained in the

following rules.

3. Corresponding to every unrepealed factor of the form ax'^ + hx -\- c,

assume the partial fraction Ax A- B
ax?- + 5x + c

4. Corresponding to evet^ factor (ax^ -\- bx + c)*, assume the sum

Aix + Bi
J

A2X + B2
_|_ ^^^

AkX 4- Bk
ax^ -^ bx -\- c (aa;2 -f 6x + c)2 (q[x2 + 6a: + c)*'

EXERCISES

Resolve into partial fractions each of the following fractions.

J
4x+ 1 jj 3 a:2 - 5 X + 4

(a;_l)(x+l)(x + 3)

3a;-l
x2-4

'

2x + l

x2(x — 4)

x^ + 1

X(X- 1)8*

1

x%x + 1)
*

x2 + 2 a; + 1

x^ + x

2 x2 - 1

3x3 + 3 x'

2x + l

X3 + X2 + X
*

1

12.

13.

14.

16.

16.

17.

18.

19
X(X2 + 1)2

3

X8-1' '"
X2(X2+1)2

10. -^. 20

(X - 1)3

X2

(X2-1)2'

X*

(x2-l)(x + 2)

x-2
(X + 1)X2

2 x2 - X + 3

x(x2-l)(2x-3)

1 +x^
(2 - x2) (2 + x2)

'

X* + X2

X* + X2 + 1

3-2x2
(2 - 3 X + x2)2

5 x3 4- 2 X + 1

(X^+1)(X-1)2°

2x+l



CHAPTER XVII

PERMUTATIONS, COMBINATIONS, AND PROBABILITY
THE BINOMIAL THEOREM

267. Definitions. Suppose that a group of n objects is

given. Any set of r (r ^ n) of these objects, considered with-

out regard to order, is called a combination of the n objects

taJce7i r at a time. We often denote the objects in question,

which may be of any kind, by letters, as a, 6, c, •••, k. The

number of combinations of these n letters taken r at a time is

denoted by the symbol „C^. For example, the combinations

two at a time of the four letters a, b, c, d are,

ab, ac, ad, be, bd, cd.

Since there are 6 of these combinations in all, we have 4C2 = 6.

On the other hand, any arrangement of r of these n objects

in a definite order in a row is called a permutation of the n

objects taken r at a time. The symbol „P^ is used to denote

the number of such permutations.

For example, the permutations of the four letters a, b, c, d

taken two at a time are

ab ac ad be bd cd ba ea da cb db dc.

Since there are 12 of these arrangements in all we have

4P2 = 12. We have assumed in these examples that the

objects are all different, and that the repetition of a letter

within a permutation is not allowed.

268. Fundamental Principle. If a certain thing can be

done in m different ways and if, when it has been done, a cer-

tain other thing can be done in p different ways, then both

420
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things can be done in the order stated in m x p different

ways. For, corresponding to the first way of doing the first

thing, there are p different ways of doing the second thing

;

corresponding to the second way of doing the first thing there

are p different ways of doing the second thing ; and so on for

each of the m different ways of doing the first thing. There-

fore there are m x p different ways of doing both things in

the order stated. This fundamental principle may at once be

extended to the following form.

If one thing can be done in m ivays, and if, when it has been

done, a second can be done in p loays, and if when that has been

done, a third can be done in q ways, and so forth, then the number

of ways ill which they can all be done, taking them in the order

stated, is m X p xq •••.

Example 1. There are five trails leading to the top of Mt. Moosilauke,

N. H. In how many ways may I go to the top, and return by a different

trail ?

There are five ways I may go to the top and for each of these there are

four ways I may descend. Therefore, the total number of ways in which
I may make the round trip is 5 x 4 or 20.

Example 2. How many even numbers of two unlike digits can be

formed with the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 ?

The digit in the units' place can be chosen in any one of 4 ways and the

one in the tens' place can then be chosen in 8 ways. Tlierefore, 4 x 8 or 32

even numbers with two unlike digits can be formed from the given digits.

269. The Number of Permutations of n Different Things

Taken r at a Time. The problem of finding the number of

permutations of n different things taken r at a time can be

stated as follows

:

Find the number of ways in which we can fill r places when
we have n different things at our disposal.

The first place can be filled in n ways, for we may take any

one of the n things at our disposal. The second place can
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then be filled in ?i — 1 ways, and hence the first and second

places together can be filled in n {n — 1) ways. Why ? When
the first two places are filled, the third can be filled in w —2

ways. Reasoning as before, we have that the first three places

can be filled in n(n — l)(n — 2) ways. Proceeding thus, we see

that the number of ways in which r places can be filled is

n (ii — l)(?i — 2) ..• to r factors,

and the rth factor is n— (r— l) or n— r+ 1. Therefore the num-

ber of permutations of n different things taken r at a time is

(1) ^p^ = „(„_i)(n-2)...(n-r + l).

Corollary. If r = n, we have

(2) ^Pn = n (n - 1) (n - 2) ... 3 . 2 . 1 = n !
*

Example. Three students enter an oflBce in which there are five

vacant chairs. In how many ways can they be seated ?

Here n = 6, r = 3. Hence sPs = 6 • 4 • 3 = 60 ways.

270. The Permutations of n Things not all Different. The

number N of permutations of n things taken all at a time, of

which p are alike, q others are alike, r others alike, and so on, is

(3) N= ~ '

Suppose the n things are letters and that p of them are a,

q of them h, r of them c, and so on.

Now, if in any of the N permutations we replace the p a's

by p new letters, different from each other and also from the

remaining n — p letters, then by permuting these p letters

among themselves without changing the position of any of the

other letters we can form p ! new permutations. Therefore if

this were done in each of the N permutations, we should

* The product of all the integers from 1 to n is called factorial n, and is de-

noted by the symbol n ! or [n. Thus 3 ! = 1 • 2 • 3 = 6. A table of the values

of n ! up to n = 10 will be found at the end of the book.
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obtain N-pl new permutations. In the same manner, if we

replace the q 6's by q new letters differing from each other and

the remaining n — q letters, the r c's by r new letters differing

from each other and from the remaining n — r letters, and so

on, we then obtain N -plqlrl "> new permutations. But the

things are now all different and may be permuted in n I

ways. Therefore J^
-
p\ - q I - r \ " = nl, or

p Iqlrl '"

Example. How many different permutations of the letters of the

word Mississippi can be formed taking the letters all together ?

We have 11 letters of which 4 are s, 2 are p, 4 are i. Therefore the

number of permutations is 11 !/(4 ! 4 ! 2 !) = 34650.

EXERCISES

1. If there are six letter boxes, in how many ways can two letters be

posted if they are not both posted in the same box ? Ans. 30.

2. If there are six letter boxes, in how many ways can two letters be

posted ? Ans. 36.

3. Two dice are thrown on a table. In how many ways can they

fall? Ans. 36.

4. Two coins are tossed on a table. In how many ways can they fall ?

5. In how many ways can five coins fall on a table ?

6. How many different permutations can be formed by taking five

of the letters of the word compare ?

7. Find the number of permutations that can be made from all the

letters of the word (a) assassination; (b) institutions; (c) examination.

8. Given the digits 1, 2, 3, 4, 5, 6, 7, 8, 9. Find

(a) How many odd numbers of two digits each can be formed, repeti-

tion of digits being allowed.

(b) The same as (a), except that repetition of digits is not allowed.

9. How many even numbers less than 1000 can be formed with the

digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, repetition of digits not being allowed ?

10. In how many ways can a hand of ten cards be played one card

at a time ?

11. In how many ways can 3 different algebras and 4 different geom-

etries be arranged on a shelf so that the algebras are together?
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271. The Number of Combinations of n Different Things

Taken r at a Time. TJie number of combinations of n different

things taken r at a time is

(4) „C, = "("-^)("-^)-("-'- + ^).

r

!

For, each combination consists of a group of r different

things which can be arranged among themselves in r ! ways.

Therefore ^C^ • r I is equal to the number of permutations of n

different things taken r at a time ; that is, „C^ • r ! = „P,, or

^ _ n(n — l)(n — 2) >» (n — r + 1)-^~
r!

Corollary 1. The value of „(7, may be written in the form

rl{n — r)l

This follows immediately from (4) if we multiply numer-

ator and denominator by (n — r) !, since

n(n- l)(n - 2) ... (w - r + 1) • (n - r) ! = n!.

Corollary 2. The number of combinations of n different

things taken r at a time is equal to the number of combina-

tions of n different things taken (n — r) at a time.

= „a.
(n — r)l (??, — [n — r]) ! (n —r) I r\

The total number of ways in which a selection of some or all

can be made from n different things is 2" — 1. For each thing

may be disposed of in two ways, i.e. it may be taken or it may

be left. Since there are n things, they may all be disposed of in

2" ways. But among these 2" ways is included the case in

which all are rejected. Therefore the number of ways of

making the selection is 2" — 1.
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Example 1. In how many ways can a committee of 9 be chosen from

12 people ?

The required number is

^ _ ^ _ 12 . 11 . 10 _ „„^
12t^9 — 12^3 — —q—r

—

— — ^IM.

Example 2. From 6 men and 5 women, how many committees of 8

each can be formed when the committee contains (1) exactly 3 women ?

(2) at least two women ?

(1) The men may be chosen in eCs ways, the women in gCs ways.

The number of ways in wliich both groups may be chosen together is

eCs-eCs, or60.

(2) Since each committee is to contain at least three women, it can be

made up as follows : , . r , ^
(a) 5 men and 3 women.

(b) 4 men and 4 women.

(c) 3 men and 5 women.

Therefore the number of possible committees is «

6^6 X 6<73 + 6^4 X 6^4 + 6C3 X 5^5 = 165.

EXERCISES

1. Find 10Cg; 11 10; 100C99.

2. How many different committees of 6 men can be chosen from a

group of 20 men ?

3. There are 20 points in a plane, of which no three are in a straight

line. How many triangles may be formed each of which has three of

these points for its vertices ?

4. How many planes may be determined by 25 points, no four of which

are coplanar, if each of the planes is to contain three points ?

5. How many different committees, each consisting of 5 republicans

and 4 democrats, can be formed from 10 republicans and 8 democrats ?

6. From 20 men how many groups of 11 men each can be picked ? In

how many of these groups will any given one of the 11 men be ?

7. Out of 6 different consonants and 4 different vowels, how many
linear arrangements of letters each containing 4 consonants and 3 vowels

can be formed? Ans. ^Ga x 403 x 7 !.

8. From ten books, in how many ways can a selection of six be made,

(1) when a specified book is always included ?

(2) when a specified book is always excluded ?
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272. Probability. If an event can happen in h ways and fail

in/ ways, and if each of thesef+h ways is equally likely, the

(mathematical) probability * of the event happening is

h

h-\-f

and the probability of its failing is f/{h +/). An equivalent

way of stating that h/(Ji -\-f) is the probability of an event

happening is to say that the odds are h to / in favor of the

event or / to 7i against the event.

The probability of an event happening plus the probability of

its failing is always equal to unity.

Example 1. Suppose from a bag containing 3 red balls and 5 black

ones, a ball is drawn at random, then the probability of its being red is f
and of its being black f . The chance that the ball is either red or black

is I + f = 1, or certainty.

Example 2. From a bag containing 3 red balls and 6 black ones, two

balls are drawn. Find the probability that (1) both are red, (2) both are

black, (3) one is red and one is black.

Two balls can be drawn in g C^ or 28 ways. Two red balls can be drawn
in 3C2 or 3 ways. Therefore the probability of drawing two red balls is

3/28.

Two black balls can be drawn in 5 (7-2 or 10 ways. Therefore the prob-

ability of drawing two black balls is 10/28.

The number of ways of drawing one red ball and one black one is

zCi X 6^1, or 15. Therefore the probability of drawing a red and a black

ball is 15/28.

Example 3. Find the probability of throwing six with two dice. The
total number of ways in which two dice can fall is 6 x 6 or 36. A throw

of 6 can be made as follows: 1, 6; 5,1; 4,2; 2,4; 3,3; i.e. in

5 ways. Therefore the probability is 5/36.

* The reason for the definition of mathematical probability may be made
clear from the following considerations. Suppose a coin were tossed vi times

and fell heads h times and tails/ times. If n is a finite number, h and/ will

in general not be equal. But as n is increased, h/{h+f) and f/(h-\-f) will

approach nearer and nearer to 1/2, and thus we take 1/2 to be the probability

of the coin falling heads
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EXERCISES

1. In a single throw with one die, find the probability of throwing an ace.

2. In a single throw with two dice, find the probability of throwing a

total of five ; six ; seven ; eight.

3. In a single throw with two dice, find the probability of throwing at

least five ; six ; seven ; eight.

4. A bag contains 5 red balls, 6 green balls, 10 blue balls. Find the

probability that, if 6 balls are drawn, they are (a) 2 red, 2 green, 2 blue;

(b) 3 green, 3 blue; (c) 5 red, 1 green
;
(d) 6 blue.

5. Four coins are tossed. Find the probability that they fall two heads

and two tails. Ans. 3/8.

6. In a throw with two dice, which sura is more likely to be thrown,

6 or 9 ?

7. Find the probability of throwing doublets in a throw with two dice.

8. Five cards are drawn from a pack of 52. Find the probability that

(«) there is one pair. [Two like denominations make a pair, for ex-

ample, two aces.]

(6) Find the probability that there are three of a kind
;

(c) two pairs
;

(d) three of a kind and a pair
;

(e) four of a kind
; (/) five cards of one

suit.

9. Four cards are drawn from a pack of 52. Find the probability

that they are one of each suit.

10. Seven boys stand in line. Find the probability that (a) a partic-

ular boy will stand at an end; (6) two particular boys will be together
;

(c) a particular boy will be in the middle.

11. A and B each throw two dice. If A throws 8, find the probability

that B will throw a higher number.

12. Find the probability of throwing two 6's and one 5 in a single

throw with three dice. *

13. In tossing three coins find the probability that at least two will be

heads.

14. If the probability that I shall win a certain event is |, what are the

odds in my favor ?

15. Find the probability of throwing an ace with a single throw of two

dice. Ans. 11/36.

16. Which is more likely to happen, a throw of 4 with one die or a

throw of 8 with two dice ?
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273. The Binomial Theorem for Positive Integral Ex-

ponents. Consider the product

(x -\-a)(x 4- a) ••• (x + a) [to n factors]

where n is any positive integer. One term' of the product is

oj" ; it is obtained by taking the letter x from each parenthesis.

There will be n terms x^'^a, for the letter a may be chosen from

any of the n parentheses which can be done in „0i = n ways.

There will be „(72 terms x^'^a"^, for the a's may be chosen from

two of the n parentheses and the x from the remaining n — 2

parentheses. In general, there will be nO^ terms a;""'" a**, for

the a's may be chosen from any r of the n parentheses, and the

x's from the remaining n — r parentheses. Therefore

(6) (x + a)^ =zx^ + nCiX'»-ia + nCax'*-^ a^ + ...

-\-„CrX'^-rar + ... + a".

This formula for expanding (x -\- ay is known as the binomial

theorem. Since „(7^ = ^(7„_„ it follows that the coefficients of

any two terms equidistant from the beginning and the end are

equal. If we write — a in place of a we have

(x - ay = x-~' + nCiX--' (- a) + n^aaj'*'' (- ay + ... -f (- a)%

or

(aj-a)«= aj"— „Oia.-"-ia+ ^OgX^-^a^— ^CaOJ^-Vi^ -j 1- ( _ 1)" a\

Example 1. Expand (2x — yy.

= 32 x5 - 80 x^y + 80xV _ 40 x'Y + 10 a-y^ _ yS^

Example 2. Find the sixth term of (2 as — 3 yy.

The sixth term is gCs (2xY ( - 3^)5, or - 108,864 x^.

Example 3. Find what term contains x" in the expansion of
(
x^—

J
.

Call it the «"i term. ThenioC«_i(x2)"-<^-iy~^ is the term. In this term

we want the exponent of x to be 11. Therefore 22 — 2«— «-f-l = ll, or

t = 4. The coefficient of this term is - 10C3 = — 120.
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EXERCISES

Expand the following by the binomial theorem :

1. (x-l)5. 3. {2x-yy. 5. (x--y,
/ l\io ^ ^'

2. (2x + y)6. 4- [^--) • 6. {z - xy)K

7. (0.9)6. [-Hint. 0.9 = 1-0.1.] 8. (0.99)3.

Write down and simplify :

9.. The 8th term of (x - iy\ 12. The 6th term of (2 a; + 3 y)i2.

10. The 5th term of (2 x - y)io. 13- The middle term of (1 - xy\

U. The middle term of (2 x - y)i*.

15. The middle terms of {z- \/z) i^.
11. The 7th term

Find the coefficient of

\b ix)

16. x^ in the expansion of (x^ — -j ,

17. a;i8 in the expansion of [x^-l--] .

1 \ 15
18. x^9 in the expansion of ( x* +- i .

19. x-^'' in the expansion of ( x* —^ ] .

V x^J

20. By considering the expansion of (1 + 1)», prove that

21. Prove 1 _ „Ci + „(72 - „C3 + •.- + (- 1)" „Cn = 0.

MISCELLANEOUS EXERCISES

1. In how many ways can 10 boys stand in a row ?

2. In how many ways can ten boys stand in a row when

(a) A given boy is always at a given end ?

(6) A given boy is always at an end ?

(c) Two given boys are always together ?

(d) Two given boys are never together ?

3. How many numbers of three digits each can be formed from the

digits 1, 2, 3, 4, 5, 6, 7, when

(a) A repetition of digits is allowed ?

(6) A repetition of digits is not allowed ?
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4. How many numbers of three digits each can be formed with the

digits 2, 3, 5, 6, 7, 9, when

(a) The numbers are less than 500 and a repetition of digits is

allowed ?

(&) The numbers are greater than 500 and a repetition of digits is

not allowed ?

5. In how many ways can a consonant and a vowel be chosen from

the letters of the word vowels ?

6. Find n when,

(a)„(72 = 45; (6) „P3 .= 210
;

(c)„(72 = „C3. *

7. Show that the number of ways in which n things can be arranged

around a circle is (n — 3) !

.

8. In how many ways can 6 people sit around a round table ?

9. How many signals can be made by hoisting 7 flags all at a time one

above the other, if 2 are blue, 3 are white, and the rest are green ?

10. How many different numbers of seven digits each can be formed

with the digits 1, 2, 3, 4, 3, 2, 1, the second, fourth, and sixth digits being

even?

11. How many handshakes may be exchanged among a party of 10

students if no two students shake hands with each other more than once ?

12. A lodge has 50 members of whom 6 are physicians. In how many
ways can a committee of 10 be chosen so as to contain at least 3

physicians ?

13. A crew contains eight men ; of these three can row only on the

port side and two only on the starboard side. In how many ways can the

crew be seated ?

14. Find n when „+2C4 = llnC2-

15. In how many ways can 18 books be divided into two groups of 6

and 12 respectively ? Atis. isC'e.

16. In how many ways can 12 students be divided into three groups

of 4, 3, 5, respectively ?

17. How many different amounts can be weighed with 1, 2, 4, 8, and

16 gram weights ?

18. How many sums of money can be made with 5 one-cent pieces,

4 dimes, 2 half dollars, and 1 five-dollar bill ?

19. In how many ways can four gentlemen and four ladies sit around

a table so that no two gentlemen are adjacent ? Ans. 144.
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20. Prove nO, + „Or_l = n+lC,-*

21. How many dominos are there in a set numbered from double

blank to double six ?

22. A railway signal has three arms and each arm can take three

different positions. How many signals can be formed ?

23. Prove n+^Cr+i = nCr+i + 2 „0, + „a-i.

24. How many combinations of four letters each can be made from

the letters of the word proportion ? How many permutations ?

Ans. 53; 758.

25. Find the probability that in a whist hand a player will hold the

four aces.

26. Find the probability of drawing a face card from a pack of 52

playing cards.

27. If two tickets are drawn from a package of 15 marked 1, 2, •••, 15,

what is the probability that they will both be marked with odd numbers ?

both with even numbers ? both with numbers less than 10 ? both with

numbers more than 10 ?

28. To decide on partners in a game of tennis four players toss their

rackets. The 2 "smooths" and the 2 "roughs" are to be partners.

What are the odds against the choice being made on the first throw ?

29. Prove that the sum of the coefficients of the odd terms of a

binomial expansion equals the sum of the coefficients of the even terms.

30. If n is an even integer, prove that there is a middle term in the

expression of (x + a)" and that its coefficient is even.

31. Provethat„Ci+2„(72 + 3„03 + ••• n„a„= w(2)"-i.

32. Prove „Ci - 2„C3 + 3„(73 + .- (- l)"-i • w • „C„ = 0.

* An application of this formula is the construction of Pascal's Triangle.

(o^o by definition will be assigned the value 1.)

oCo

iCo iCi

2C0 aC'i .
2C2

8^0 sCi 8C2 3^3
4C0 4C1 4C2 4C3

1

2 1

3 3 1

4 6 4404

The formula in Ex. 20 shows that any number n+iCr is equal to the number
just above it, i.e. nCr, plus the number nCr-i which is to the left of nCr.. Thus
for example 4C8 = 3C3 -f 362. We can, by means of this formula in Ex. 20,

write down the next row. It is

1 5 10 10 5 1

The numbers in the nth row of the table are seen to be the coefficients

of the terms in the expansion of (z-{- a)^ (§ 273)

.



CHAPTER XVIII

COMPLEX NUMBERS

274. Definitions. We have already had occasions to refer

to the so-called imaginary numbers. A number that arises as

the result of extracting the square root or, indeed, any even root

of a negative number is called an imaginary number. Thus

V— 2 is an imaginary, number ; the roots of the quadratic

equation ^624. 3 _ q^ yiz. ± 2V— 2, are imaginary numbers.

We have hitherto avoided the use of imaginary numbers as

far as possible. It now becomes desirable to take them defi-

nitely into account, to learn how to work with them, and to

gain some knowledge of their usefulness. Indeed, one of the

primary objects of this chapter is to show that imaginary

numbers have quite as concrete an interpretation as the real

numbers, an interpretation which in many cases is of great

service in the solution of concrete problems.

The letter i is used to represent the so-called imaginary

unit; it is by definition such that i^ = — 1.

Numbers of the form ibj where 6 is a real number different

from zero, are called pure imaginary numbers.

Numbers of the form a -\- ib, where a and b are real numbers,

are called complex numbers.

In the complex number a -f- ib, a is called the real part and

ib the imaginary part. In a real number the imaginary part

is zero ; in a pure imaginary the real part is zero. A complex

number a -f- &« is imaginary if 6 ^ 0.

When two complex numbers differ only in the sign of the

imaginary part they are said to be conjugate. Thus 3 + 2 t

and 3 — 2 i are conjugate complex numbers.

432
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275. Assumption. We assume that complex numbers obey

the laws of algebra given in § 41. By applying this assump-

tion we have symbolically for the sum and difference of the

two complex numbers a + ib and c -f id,

a -{-lb ± (c -\- id) = a ± c -\- i(b ± d).

That is, to add (subtract) complex numbers, add (subtract) the

real and imaginary parts separately.

276. The Geometric Interpretation of the Imaginary Unit.

We now seek a geometric interpretation of the imaginary unit

i. To this end we recall the familiar representation of the

real numbers as directed segments on a line, o j

together with the interpretation of multiplica- ^^co^-a a

tion by - 1 (§ 35). To multiply a real number ^'''- ^^^

a by — 1 is equivalent geometrically to a rotation about the

point through two right angles of the segment OA which

represents a (Fig. 237).

Now, by definition, i is such a number that i^ = — 1. To

multiply a real number a by — 1 is then equivalent to multi-

plying it by P, i.e. by i • i. Multiplying a real number a by i

may, therefore, be interpreted geometrically as an operation

which when performed twice is equivalent to a rotation about

in the plane through two right angles ; i.e.

to multiply a by i may be interpreted geo-

metrically as equivalent to rotating OA about

" ^ in the plane through one right angle.

The number ai will then be represented by

a segment OB equal in length to OA whose

direction makes with that of OA an angle of

90° (see Fig. 238). In the figure we' have also indicated the

result of multiplying ci by i^=i 'i=—l and by i^=i • i • i= —i.

2f
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Multiplying by i* = i • i . i . i = 1*2
. /2 = 1 is then to be inter-

preted as a rotation through four right angles.

EXERCISES

Give the conjugates of the following complex numbers

:

1. 3 + 2 I. 2. 3 - 4 1. 3. _ 5 - 3 1. 4. _ 8 + i.

Simplify the following expressions :

6. 2(3 + 4 i) - 4(1 - i). 7. ll^ii _ ^J^li.

6. - 4(1 - i) -}- 6(3 - 28 i). 8. x + iy + ix + y.

9. Prove that the sum of two conjugate complex numbers is a real

number.

10. Is the following statement true ? If the sum of two complex

numbers is a real number, the complex numbers are conjugates. Explain.

11. Prove that every even power of i is equal to either 1 or — 1.

12. Prove that every odd power of i is equal to either i or — i.

13. Find the value of i 4- 2 i^ + 3 i^ + 4 i*.

14. Find the value of i^^ + i*^ + ^es _|. j69 _,. 4-44.

277. Vectors in the Plane. We have seen that, if any real

number a is represented by a horizontal segment directed to

the right or left according as the number a is positive or

negative, then the imaginary number ai may be represented

by a vertical segment directed upward or downward accord-

ing as a is positive or negative. This suggests the possi-

bility of representing other complex numbers by segments

having other directions in the plane. Such a directed seg-

ment will represent a magnitude (the length of the segment)

and a direction. Therefore such a segment can be used to

represent a variety of concrete quantities that are not merely

geometric; e.g. a force of a given magnitude and acting in

a given direction; a velocity, meaning thereby the speed

(magnitude) and the direction in which a body moves ; etc.

Such quantities having both direction and magnitude are
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called vectors, and, if the directions are restricted to lie in

the same plane, they are called plane vectors. Any plane

vector may, then, be represented by a directed line-segment

in the plane.

Two vectors are said to be equal if and only if they have the

same magnitude and the same direction. Hence,- from any

point in the plane as initial point, a vector can be drawn equal

to any given vector in the plane.

278. Addition of Vectors. The addition of vectors in the

plane proceeds according to a definition analogous to the geo-

metric addition of directed line-segments discussed in § 35. If

we are given two vectors AB and BC, we may
conceive the first to represent a motion from

Ato B and the second a motion from B to O.

The sum of the two vectors then represents, ^ ^

by definition, the net result of moving from A ^^^' ^^^

to B and then from B to C, i.e. the motion from A to C. The
sum of the vectors AB and ^C is then the vector AC (Fig.

239). In symbols ^s + BO = AC.

In other words, the sum of two vectors is the vector from the

initial point of the first to the terminal point of the second,

when the vectors are so placed that the initial point of the

second coincides with the terminal point of the

A,^^^^\/ first. From this definition it follows immediately
^ that, if two vectors issue from the same point

0, their sum is the diagonal, issuing from 0, of

the parallelogram of which the two given vectors form two

adjacent sides (Fig. 240).^

* If the vectors represent two forces, this shows that the sum of the vectors

represents the resultant of the forces according to the law known as " the

parallelogram of forces."
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279. The Components of a Vector. The projection of a

vector on a given line is called its component parallel to the line.

Thus in Fig. 241 the directed segment M1M2 is the horizontal

»« r -^'

*l
1

i 1

M, -M,

Fig. 241

component of the vector AB, and the directed segment ^1:^2

is its vertical component. Moreover,

vector AB — vector N^N^ + vector M^M^.

If the horizontal and the vertical components of a vector are

known, then the vector is known. Why ?

280. The Complex Number x + iy and the Points in the

Plane. Let OP (Fig. 242) be any vector issuing from 0, and

let the horizontal vectors issuing from be represented by the

positive and negative real numbers (and zero). We have seen

F;

p

Vi

X̂ J/ V
Fig. 242

that the numbers of the form ai can be represented by the ver-

tical segments issuing from 0. Here a is a real number and i is

a vector of unit length. The horizontal component of OP will

then be a certain real number x, and the vertical component a

certain pure imaginary number iy. The vector OP will then

be equal to the sum of these two components, i.e.

OP^x-\- iy.



XVIII, § 280] COMPLEX NUMBERS 437

Conversely, every number of the form x -\- iy represents a

definite vector in the plane. If its initial point is at the origin

of a system of rectangular coordinates (with equal units on

the two axes), its terminal point is the point (x, y).

We have hitherto used vectors in the plane to represent the

complex numbers. If we think of these vectors as all having

their initial points at 0, each vector determines uniquely, and

is uniquely determined by, its terminal point. Hence, we can

also use a complex number to represent a point in the plane,

viz. the number x + iy will represent the point whose rectan-

gular coordinates are (cc, y).

Example 1. Represent by means of vectors the complex numbers
'2 + 2i and 1 \-Qi. Find the vector that represents their sura.

In Fig. 243 the vector OA represents the complex number 2 + 2 i, and
the vector OB represents the complex number 1+6 i. The sum of these

two complex numbers is represented by the vector OC. Why ?
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Fig. 243 Fig. 244

Example 2. Find the vector that represents (1 + *")— (2 — 3 1).

To find this vector, find the vectors, OA and 0J5, that represent 1 + i, and

2 — 3i, and determine OC so that OA is the diagonal through O of the

parallelogram of which OB and OCare adjacent sides (Fig. 244). Note

that the vector OC is equal to the vector BA.
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281. Equal Complex Numbers. Ifx-{-iy = 0, then x = and

y = 0. For, if cc + iy = 0, and y=^0, we should have x/y = — i,

which is impossible. Why ?

If Xy + lyi = X2 + iy2, then x^ = x^ and y^ = 2/2- ^oi*) ^J trans-

posing terms, we have (x^ — Xo) + i(yi — 2/2)= ^- Hence, we

have Xi = X2 and y^ = 2/2.

Thus, fwo complex numbers are equal if and only if the real part

of the first is equal to the real part of the second, and the imaginary

part of the first is equal to the imaginary part of the second.

Geometrically, two complex numbers are equal if and only if

they represent the same point.

282. The Polar Form of a Complex Number. Connect the

point P{x, 2/) (Fig. 245), which represents the complex number

X 4- iy, to the origin 0. If we let {p, 6) (p > 0) be the polar

coordinates of P(0 being the origin and OX the initial line),

then for any position of the point F we have

^
'x = p cos 6,

,y = p sin 0.

Therefore, the complex number x -\-iy may

be written in the form

(2) x + iy = p(cose + zsine). (p^O.)

This form of complex number x + iy is called the polar form.

The angle 6 is called the angle or the argument, and the length

p is called the absolute value * of the complex number.

Example. Find the angle, the absolute value, and

the polar form of the complex number 2 -}- 1 2\/3.

Plot the complex number (Fig. 246). Now we have

p — y/x^ + y^. Hence p = \/4 + 12 = 4. Moreover

tan^=\/3, i.e. 6=00°. That is, the absolute

value is 4 and the angle is 60°. Therefore the polar

form is 4 (cos 60° + i sin 60°)

.

^«- 2*6

* Also sometimes called modulus.

V
(1)

Fig. 245

Y
J

Pi2+i2/3)

/ 2/3

A'°
2 X
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EXERCISES

In the following exercises represent by vectors the numbers in paren-

theses, and their sum or difference as the case may be :

1. (3 + + (-4 + 20. 4- (5-40-(-2-i).
2. (1 +3i)-(5-60. 5. (3 + 2z)+(3+20.

3. 7_(5 4.3 4). 6. (-4-4i)-6.

Represent by a point each of the following complex numbers ;

7. 3 + 5 i. 9. 6 + i. 11.-3+6 i.

8. 3-3i. 10. -5-3i. 12. 7 + iV2.

In the following exercises, represent by points the numbers in paren-

theses, and their sum or difference as the case may be :

13. (3-hO + (-4 + 2 0. 16. (5-4 0-(-2-0-
14. (l-f-3 0-(5- 6i). 17. (3 + 2 + (3-t-2i).

15. 7 -(5 + 3?). 18. (3 + 3 0-5.

Find real values of x and y satisfying the equations :

19. 2x— iy = 4:y — Q — 4i. 22. ixy + ic+?/ = 5 + 4i.

20. X + io-y = y + 6 + 36 i. 23. a:2 + ?/2= 25 - (3 x+4 y-2b) i.

21. {Sx+ Qy+2)i — Sy-x=8. 24. ix -{- iy = 4: i -\- 5 x.

Find the angle and the absolute value of each of the following complex

numbers. Represent the numbers in polar form :

25. l + iV3. 27. 1-1. 29. 3i. 31. -8i.

26. 5 + 5i. 28 1-*-^. 30. -8. 32. 12 + 5 i.

2 2

33. Can the complex number x + iy, where x and y are real numbers,

equal 7 ?

34. Under what circumstances is the sum of two complex numbers a

real number ?

Change the following complex numbers from the polar form to the

form x-}-iy :

35. 3(cos 30° + i sin 30°) . 38. 2 V2(cos 225° + i sin 225°)

.

36. 4(cos 135° + z sin 135°). 39. 4(cos 90° + i sin 90°).

37. cos 210° + i sin 210°. 40. 8(cos 180° + i sin 180°).
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283. Multiplication of Complex Numbers. Our assump-

tion in § 275 allows us to multiply two complex numbers

iCi -f- iz/i and X2 + iy^ as follows

:

(a?! + *2/i)(aJ2 + m)= 3^1352 4- iy1X2 + ixiy2 + ^^l2/2

= (aJia^2 - 2/1^2)+ *(^i2/2 + X2yi)'

If the two numbers are written in polar form, the multipli-

cation may be performed as follows

:

^'1 + *2/i = pi(cos 61 4- i sin ^1),

^2 + %2 = p2(cos $2 + I sin ^2)-

By actual multiplication, we have

(•^1 + iyi)ix2 + m)
= P1P2 [cos 61 cos ^2 -h '' (sin Oi cos ^2 + cos Oi sin ^2)— sin Oi sin ^2]

= P1P2 [cos (^1 4- ^2)+ i sin ((9i + ^2)].*

Therefore, the absolute value of the product of

two complex numbers is equal to the product

of their absolute values, and the angle of the

product is equal to the sum of their angles.

In Fig. 247 the points Pi and P2 represent the

complex numbers xi + iyi and X2 + iy2 respectively.

The point P3 represents {xi-\-iyi)(x2 + iyo)-
Fig. 247

284. Division of Complex Numbers. The quotient of two

complex numbers Xi -\- iyi and X2 -f- iy^ luay be reduced to the

form a + ib if we make the denominator real by multiplying

both numerator and denominator by the conjugate of the

denominator. Thus,

Xi + iyi _ a?i + m .
X2 — iy2 ^ X1X2 -h iyiXj — ixiy2 — i^yiyz

X2 -f iyo «2 + m ^2 — iyi

^2' + 2/2'

* See § i:ts

X2^ + 2/2'

^%Vi

x^^y^
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If we write the two complex numbers in polar form and

then perform the division, we have

pi (cos $1 + I sin ^i) _ pi (cos Oi + i sin ^])(cos 0^ — ^ sin O^)

P2 (cos $2 + i sin O2) p2 (cos O2 + i sin 62) (cos ^2 — i sin ^2)

^ Pi [cos (^1 - O2)+ i sin (^1 - ^2)1

P2(cos2^2 + sin2|92)

= ^^ [cos (^i - $2)+ 1 sin (0, - ^2)].

Therefore, the absolute value of the quotient of two complex

numbers is equal to the quotient of their absolute values, and the

angle of the quotient is equal to the difference of their angles.

Example 1. Find analytically and graphically the product (1 -f i)

Solution. Analytically,

(1 + 0(3 4. V8 i) = 3 + 3 I + V3 ^ + \/3 i^ = (3 - V3) + i (3 + V3).

Graphically, writing the complex numbers in polar form, we have

V2(cos 45° + i sin 45°) and 2 V3(cos 30° + 2 sin 30°).

Therefore pi = \/2, P2 = 2 V3, Ox = 45°, 62 = 30°.

Ir 4^t^
£

1
t

-^rit -

7 p^^^'
tc-^^_

X

1 . .

Fig. 248

Hence the absolute value of the product is p\p2 =2 V6 and the angle of

product is 75°. In Fig. 248 the points Pi, Pi, and P represent respectively

the complex numbers 1 + i, 3 + iVS, (1 + 1)(3 + iV3).
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Example 2. Find analytically and graphically the quotient

(3 + iV3)/(l + 0-

Solution : Analytically

:

3 + iv/3 ^ 3 + iV3 1-i^ (3+ V3)-i(3-V3)
^

l+i 1 + t 1 - i

z

^xc^ -t//^
gr ^_jo^^ ^±:

-E

Fig. 249

Graphically^ using the results in Ex. 1, we see in Fig. 249 that the

points Pi, P2, and P represent respectively the complex numbers

(1 + 0, (3 + iV3), (3 + iV3)/(l + 0.

EXERCISES

Perform the following operations analytically and graphically

:

1. (1 + 0(2 + 2 0. _ g l-zV3
2. (1 + i V3)(2 4-i2V3). * -3 '

3. (2 0(5)- T
5 + 5t

4. (i_j-0(-2-20(- 1 + iV3).
* l-»

3 + iV3 8. n-0'
-

6.
1 + I 2 + I 2 \/3

Perform the following operations analytically :

a 3 + i U. (i9 + iio + i" + ii2)7.

l_^18t 3-29t
10.

7-iV2

3 + 4 i 3 - 4i

11.

12.

13.

(2 + 1)2 (2 - 0'

X + t Vl — X2

16.

V V2 /

Vl-x^
17 2 + 3 ;; 3 + 2 ^

3 _ 4 I 3 + 4 i

1 + i 18. V? + 24 i.
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285. DeMoivre*s Theorem. The result of § 283 when ap-

plied to the product of any number of complex numbers leads

to the following :

I. The absolute value of the product of any number of complex

numbers is equal to the product of their absolute values.

II. Tlie angle of the product ofany number of complex numbers

is equal to the sum of their angles.

If the above statements be applied to a positive integral

power of a number, i.e. to the product of n equal factors,

we obtain

(3) [/3(cos 6 -\- i sin ^)]" = p"(cos nd -\- i sin n 6).

For the special case p = 1 we obtain

(4) (cos 6 + i sin 6)" = cos n 9 + / sin n 6.

This relation we have just proved for the case where n is a

positive integer. It also holds when ti is a negative integer.

For we have

(cos^ + isin^r= i ^cos^-tsin^
^ cos + 2 sin e cos2 6 -f- sin^ 6

= cos (— 0) 4- i sin (— 0),

and hence

(cos + i sin 6)-'' = [cos (— 0) -f i sin (— 0)^

= cos (— p 6) 4- i sin (— p 0).

Further, \i n — 1/g, where g is a positive or negative integer,

we have, by what precedes,

(5) (cos + i sin Of = [Uo^- + i sin-Vl^

and hence

(6) (cos ^ + i sin Oy = (^cos - -f- / sin ^\ = cos ^ ^ + / sin ^ 9.

613= COS-+ isin-,
q q
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This shows that relation (4) is valid for all rational values ofn.

It should be noted, of course, that relation (5) states merely

that a certain q^^ root of cos 6 + i sin 6 is cos {O/q) -f- i sin {6/q)

and that a similar statement applies to relation (6). The fact

expressed by (4) is known as De Moivre's theorem.*

286. "Powers and Roots of Numbers. De Moivre's theo-

rem often enables us to compute an integral power of a complex

number without difficulty, as the following example will show.

Example 1. Find the value of (2-{-2i)^. The polar form of this

number is 2 \/2(cos 46'^ + i sin 45") . Hence

(2 + 2 0^= (2\/2)6(cos225° + i sin 225°)

= 128V2(---- 7:^=- 128 -128 I.

V V2 V2y

To find the nth roots of a number requires special methods.

Example 2. Find the 5th roots of 2 + 2 i.

Here as in Ex. 1 we may write

2 + 2 i = 2V2(cos 45° + i sin 45°)

and hence (2 +2 0^=(2V2)^(cos9° + isin9°).

But this is not the only number whose fifth power is 2 +2 i. For we
may write 2 + 2i = 2v'2[cos(45° + k 360°)+ i sin(45° + fc 360°)], where

k is any integer. That is to say,

(2 + 2i)^=(2\/2)^[cos(9°+ ^•72°)+ isin(9° + Ar72°)].

For the values A; = 0, 1, 2, 3, 4 we get the five numbers

(7)

(2\/2)^"(cos9° + isin9°), (2 V2)^ (cos 225° + i sin 225°),

(2\/2)^^(cos81° + i sin 81°), (2V2)^(cos297° + i sin 297°).

[
(2 V2)^(cos 153° + i sin 153°),

The succeeding values of k (i.e. A = 5, 6, •••) evidently give numbers

equal to the preceding respectively. Each of the five numbers is a fifth

root of 2 + 2 i ; they are all different.

Abraham de Moivre (lfi67-1754), a mathematician of French descent

who lived most of his life in England.
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The general formulation of the problem of finding the nth

root of a number z = /o(cos 6 -\-i sin 9) is as follows. The most

general form for z is

z = p[Gos{e + k 360°) 4- i sin((9 + k 360°)],

where k is an integer.

This gives, by De Moivre's theorem,

1 1

z'-==p'
(9 + A: 360°

,
. . 6> + A; 360

cos --^ h t sm —^

The n values A: = 0, 1, 2, —, n — 1 give n different values for

2^/" and no more values are possible. Why? Here pV« means

the numerical nth. root of the positive number p. We have

then: Every com2i>lex number (^0) has just n nth roots. These

n roots all have the same absolute value ; their angles may be

arranged in order in such a way that every two successive

ones differ by 360°/7i.

EXERCISES

By using De Moivre's theorem find the indicated powers, roots, and

products.

1. (4 4-i4V2)6. 4. (3 + iV3)io.

2. (cos 10° + i sin 10°)9. 5. ( - 1 - WS)^.

3. (l+iV^. 6. (-2+2«)*.

7. [3(cosl5° + isinl5°)]i5.

8. [2(cos 20° + I sin 20°)][3(cos 70° + i sin 70°)].

9. [2 4-2i][V8 + t].

10. (3-3 0(-l + iV3).

11. \/4 + i4>/2.

12- V3 + tV3.

13. </_4+4z.

15. V- l-iV3.

16. v^cos 45° + i sin 45^.

17. V2Ti.

18. The cube roots of 1.

19. V:^.
20. V2^.14. \/8(cos6U° + isin60^).

21. Prove that tlie n nth roots of a given number z are represented by

the vertices of a regular polygon of n sides whose center is at the origin.
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287. Applications in Trigonometry. De Moivre's theorem

may be used to advantage in certain trigonometric problems.

I. To express cos nO and sin nd in terms of cos and sin 6.

' We have the relation

cos nO + i sin nO = (cos $ -{- i sin Oy

= cos" O-hn- i cos"-i ^ sin ^ -f
^K^^ — ^)

^-2 cos"-2 sin^ ^ + ...

A

If in this relation we equate the real and the imaginary

parts we get the expressions desired.

Example 1. Express cos 6 d and sin 6 ^ in terms of cos 6 and sin d.

The above method yields in this case :

cos 6 ^ + i sin 6 ^ := (cos 6 { i sin 0)'^

= cos6 e -\-Q icos^ ^sin ^ - 15 cos* 0sin2 ^ - 20 1 cos^ 6 sin' 6 + 16cos2 ^sin* d

+ 6 I cos 9 sin° 6 — sin^ d.

Equating the real parts, we have

cos 6 £> = coss e — 15 cos* e sin2^ + 15 cos'^ sin* d — sin^ 9.

Equating the imaginary parts we get (after dividing by i)

sin 6 ^ = 6 cos5 d^inO — 20 cos^ d sin^ ^ + 6 cos ^ sin^ d.

II. To express cos"" 6 and sin"" 6 in terms of sines and cosines

of multiples of 0. If we place w = cos + i sin 0, we have

u^ = cos kO 4- i sin kO, u~^ = cos kO — i sin kO.

Adding and subtracting these equations, we have

.r,. [
w* + w'' = 2 cos k$,

[ u^ — n -* = 2 4 sin kd,

for any integral value of k.

In particular when /c = 1, we have

2 cos 6 = u -^ u~^, 2 i sin $ = u — ^^~^

It follows that

2^ cos" e= {u -|-ifc-i)«= w"4- nu-'^-{-
^^^'~^\''-*-\ \-na-^''-^^+u'\
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The fact that the coefficients in the binomial expansion are

equal in pairs makes it always possible to group the terms as

2'^ cos"^ = {w H- ?r") -h n(ifc'^-2 -f ir(«-2))+ ....

But the terms in parentheses on the right are equal respec-

tively to 2 cos ?i^, 2 cos {n — 2)0, •••. The following examples

will make the method clear.

Example 2. Express cos* in terms of cosines of multiples of 6.

We set

= w4 + 4m2_|.6 + 4 u-^ + M-*

= (m* + M-*) + 4(m2 _|_ u-2) -f 6

= 2 cos 4 ^ + 4 . 2 cos 2 + 6.

Dividing both members by 2* we obtain the desired result

cos* e = I (cos 4 ^ + 4 cos 2 ^ + 3)

.

Example 3. Express sin^ 6 in terms of multiples of the angle d.

We set
25 1*5 sin^ e = {u— u-^y

or
32 i sin^ 6 = u^ — bu^ -\-10 u— Id ir^ + 5 m-^ — u-^

= («5 _ |<-5) _ 5(1(3 _ «-3) 4. 10(w _ M-1)

= 2 I sin 5 ^ - 5 • 2 i sin 3 ^ 4- 10 . 2 i sin d.

Whence
sinS d = ^^ (sin 5 ^ — 5 sin 3 ^ + 10 sin ^)

.

EXERCISES

Express each of the following in terms of cos d and sin 0.

1. cos 2 and sin 2 ^. 3. cos 4 ^ and sin 4 ^.

2. cos 3 e and sin 3 ^. 4. cos 5 ^ and sin 5 0.

6. Show that tan 4 g ^ ^ <^^^ ^ (^ - ^^"' ^)
.1-6 tan2 + tan* ^

6. Find tan 5 ^ in terms of tan 0.

Express each of the following in terms of sines and cosines of multi-

ples of ^

:

7. sin8 0. 9. sin* 0. 11. cos^ 0.

8. cos8^. 10. cos«^. 12. sin6^.
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MISCELLANEOUS EXERCISES

Solve the following equations and illustrate the results graphically.

1. x3 - 1 = 0. 3. x5 - 32 = 0. 5. cc8 - 1 = 0.

2. x3 + 1 = 0. 4. a;6 - 1 = 0. 6. a:^ + 1 = 0.

7. Prove that

cos nd = I [cos d + I sin ^]" + ^[cos 6 — i sin ^J".

8. Prove that

i sin nd = I [cos 6 -\- i sin ^]" — i [cos — i sin ^J**.

9. Prove that

/I -f sin ^ + t cos ^X'* ,, /,N , • • /T „N
{
'—- — =cos(lmr—nd)+ismUn'ir— nd).

10. Prove that the product of the n nth roots of 1 is 1, if n is odd, and
— 1 if n is even.

11. Prove that the sum of the n nth roots of any number is 0.

12. Complete the discussions in § 287 to derive the following formulas.

L (a) cos;i^=cos"0— ^^^^i^~!-)cos"-'^^sin2^
^ ^

2!

,
n(n— l)(n — 2)(n — 3) „ a ^ a ^ .

_l
—

V

ZA zs 1 cos "-4 d sm^ 6 -\- •••.

4 1

(6) sin nd=:n cos'»-i ^ sin ^ - ^(^ - ^) (̂ .ZL^ cos^-s q gin^ ^
o !

, nCn- l)(n - 2)(n-3)(n-4) „ ,^ . ,^+ ~^^ ^-^ — — ^ cos"-fi e sin^ ^4- . . •.

5 !

II. (a) cos«^=-l- rcosn^+ncos(n-2)^+*-^—̂ cos(n-4)^+-"l.

n

(b) sin»^ =^-=^1 cosn^- ncos(n - 2)^ +^^^=-^cos (n-4)^+ •••],

if n is even ; but

sin"/? = i=J-) ^ rsinn^-nsinrn-2)^4- ^^^~-^^
sii

if n is odd.

fsin «^-n sin(n-2)^ + ^^^ ^^
sin (n - 4)^+ ...],



CHAPTER XIX

THE GENERAL POLYNOMIAL FUNCTION
THE THEORY OF EQUATIONS

288. The General Polynomial Function of Degree n. The

general polynomial of degree n,

f{x) = a^x"" 4- a^-ix""-^ + a,^-2X^-^ H \- aiX -{- a^ (a„ :^ 0),

has already been defined (§ 255). We have already dis-

cussed in some detail special cases when the degree of f(x) is

1, 2, 3, (Chapters III, IV, V). For these cases we proved that

the function is always continuous, and we learned how to find

the slope of the graph of the function at any point. It is our

present purpose to extend these results and methods to a func-

tion represented by a polynomial of any degree.

ax^ + a^-iX""-^ H h aiK + otr

289. The Slope of the Graph of /(x).

the slope of the graph of the equation

(1) y=n^)

at any point Pi{xi, y^ of this graph,

we first find the slope A^z/Aic of the

secant P^Q (Fig. 250) joining the

point Pi to any other point Q(flJi+ Aa?,

2/i + Ay) on the graph. To this end

we must first calculate the value

of Ay in terms of Xi and Aoj. We
have

2o 449

Continuity. To find

Fig. 250
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= a,(a^i + ^xy + a«_i(a:i + Axf-'^ + - +ai(xi+ Ax)-\-aQ.

Vi=/W= «„a;i" + a„_iaji«-i + .•• + a.x^ + a^.

By subtraction and proper grouping of terms we find

(2) Ay=f(x,-{.Ax)-f(x{)

= alix, + Axy- a^r] + a„_i[(a;i + Axy-^-x^^^-]

H h«i[(^i + Aa;)— ajj.

Each of the terms of this expression is of the form

(3) al(x, + Axy-x,'^l

and the whole expression is equal to the sum of all terms ob-

tained from (3) by letting k take on the values k = n,n^l, —, 1.

Expanding the first term in the brackets, we obtain

a,l{x^ + Axy - X,'']

= «,[.T/+A;a;i*-iAa;+ ^fc^a;i*-2Aa;2 + ... + Aa;*- a^i*]
A

^alkx^-^^^-~-^x^-''b.x + - + Aa;*-i]Aa?.
Z

It is clear from this expression that for every value of k

the expression (3) has A« as a factor. Moreover the expres-

sion (2) for A?/ is the sum of such terms as (3) for different

values of k ; and, since each of these terms has the factor Ax',

their sum has the factor Aa;. Hence, if we divide Ay by Aa;,

we have for the slope Ay/Aa; of PiQ, the expression

Aa/ u

-f terms with higher powers of Aa;] k=.n.

+ a,_j[(n - l)a;i"-2 + (^^ - l)(n - 2) ^^,^_3^^

4- terms with higher powers of Aa?] k = n — \.

f a2[2 a^i + Aa;] A: = 2.

-h tti A: = L
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The slope m of the graph is the limit approached by Ay/Aa;

as Aic approaches zero (i.e. as Q approaches Pi along the curve).

This gives finally

(4) m = ?ia„iCi'*-^ +(n — l)an-i^i''~^ H -f ^ ^2^n + «i

[Note that for the values w = 3 and w = 2 this reduces to the expres-

sions previously derived for the cubic and quadratic functions. ]

Moreover, it follovt^s from the remark above, concerning the

fact that Aa; is a factor of A?/, that as Ax approaches zero, Ay

approaches zero also. But this proves that f{x) is continuous

for every value of x. We have then the theorem :

Every polynomial f{x) is a continuous function of x.

290. The Derived Function. In previous cases where we

have considered the slope of a curve y =f(x) we have always

considered its value at some given point Pi on the curve. As

the point Pj moves along the curve, however, the value of the

slope in general changes. In other words, the slope itself may

be considered as a function of a;. This function is called the

derived function or the derivative of f(;x). If the original

function is denoted by f{x), the derived function is denoted

hj f'{x). In case of the polynomial f{x) considered in the last

article the derived function f\x) is obtained from the expres-

sion for the slope m by letting the given value Xi become the

variable x, i.e. if f(x) = a^x'' + cin-i^'"'^ H h ^i^^ + «05 ^® ^^^®

the derived function

(5) f\x)= na,x^~^+ (n - l)a„_ia;»-2+ ... + a^.

The derived function of any polynomial is readily written

down from the following consideration. The derivative of any

term a^x'' is Zca^ic*"^ ; i.e, it is obtained by multiplying the term

by the exponent ofx and reducing the exponent of x byl. Thus

the derivative of a^ is 3 x^, of 10 a;^ is 20 x. The above expres-

sion for/' (a;) shows that the derivative of a polynomial is the
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sum of the derivatives of its terms. Thus the derivative of

6 a;^ — 3 ic* + 7 a;2 — 1 may be written down at once ; it is equal

to 35 a^ — 12 a;3 _j_ 14 ^.^ Observe that the derivative of a con-

stant is 0.

The relation between the derived function f{x) and the slope

of the graph at any point, is expressed as follows :

The slope of the graph of the curve y =f{x) at the point x = Xi

is equal to the value of the derivedfunctionfor x=Xi^ i.e. m=f'{x^.

Further, since the derived function of a polynomial is a

polynomial, it follows from the theorem at the end of the last

article, that the derived function of a polynomial f{x) is a con-

tinuous function of x.

EXERCISES]
Find/Cx) when

1. /(a;) = x3 + 4 x2 - 6 a; + 3.

2. /(a;) = 5a:6-4a;8 + 6a;2 + 2a; + l.

8. /(x) = 7 a:7 - 4x3 + 2 X + 19.

4. /(x)=3x6-4x* + 2x8 + 3x2+ 1.

6. Find the equation of the tangent to 2/ = 4 x* ~ 3 x + 1 at (1, 2).

6. Find the equation of the tangent to y = x^ — 5x2 + 2 at the point

(1,-2).

291. The Graph of a Polynomial S{x). In drawing the

graph of a given polynomial of degree greater than 3, we may
proceed as in the cases of polynomials of degrees 2 and 3.

There are two general theorems to aid us

:

(1) The graph of any polynomial is a continuous curve ; in

particular, the value of y does not become infinite except when
X becomes infinite.

(2) The tangent to the graph at any point P turns continu-

ously as P moves along the curve ; i.e. the curve has no sharp

corners and the tangent is nowhere vertical. (Why ?)

We found in discussing the graphs of cubic functions that
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the values of x for wMcli the slope is zero were particularly-

helpful, ill view of the fact that they gave us, in general, the

turning points (maxima and minima) of the graph. Let us

apply these principles to an example.

Example. Draw the graph ofy=f(x)= -|(3 a^— 4 x^ - 12 «2 + 3).

Weliave f(x) = i(x^- x^-2x)= 4x(a;- 2)(x + 1).

Hence/(x) = when a; = 0, 2, — 1.

We require next a table of correspond-

ing values of x and y. Here synthetic

division is often convenient. Thus, to find

/(ic) when a; = 2, we write

3 -4 -12 3[2

6 4-16-32
3 2-8-161 -29 = 32/.

Hence y = — 9| when x := 2.

When a; = 3, we have

3 - 4 - 12

9 15 9

3|3

27

3 6 3 9 30 = 32/.

Hence y = 10 when a; = 3.

:::::i^-::"t:

22

^__.5.

==-========;==
::::3::^:::i=:::

;::::i:::|i::i:^^^
Fig. 251

We may note that since all the partial

results 3, 5, 3, 9, 30 are positive, any value of a;> 3 will give values of y
greater than 10.

Finding the values of y for other values of x, we have the following

table:

x = -2 -1 1 2 3

y = 111- -1 1 -3^ -H 10

w =

We have also indicated in the table the values of x for which m is zero.

These data give us the graph exhibited in Fig, 251. This example sug-

gests certain other general theorems regarding the graph of a polynomial,

which are discussed in the following articles.
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292. The Value of a Polynomial for Numerically Large

Values of x. In the example of the last article we saw that

for all values of x>S, the values oif(x) were greater than 10

;

in fact, the nature of the synthetic division showed that as x

increased indefinitely from x = 3, the value of f{x) increased

indefinitely. Any polynomial f(x) of degree n with real coefii-

cients (§ 288) may be written in the form

f{x)=aAl +f^^i=l^' + ^^=?^' + - +-^^1
[_ \ ttna?" anX"" anX'^Jj

=a„x.[l+(o„_,l+c„.,l+...+c.i)].

Since the absolute value of a sum is equal to or less than

the sum of the absolute values of its terms (§ 35), we have,

X'^l

11.
<

1
Gn-1-

X X'^l

1
Cn—

i|(|c,.i| + |c„_2| + - + |eo|)<-^, (kl>l).
x\ \x\

where c is a positive number independent of x. Hence, if
|
a;

|

>c,

the value of the expression in square brackets above is cer-

tainly positive. Therefore for sufficiently large values |a;|,

the sign oif{x) is the same as the sign of a„ic'».

If an is positive and x becomes positively infinite, f(x) is

positive. If a„ is positive and x becomes negatively infinite,

f{x) is positive if n is even, and negative if n is odd. If a^

is negative and x becomes positively infinite, f(x) is negative.

If a„ is negative and x becomes negatively infinite, f(x) is

negative if n is even, and positive if n is odd.

As X increases indefinitely in absolute value, the value of f(x)

increases indefinitely in absolute value. For sufficiently large

values of\x\, the sign off{x)is the same as the sign, of anX"".
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In particular, this leads us to the following theorems.

Iff{x) is a polynomial of even degree, the infinite branches of

the graph ofy = f{x) are either both above the x-axis or both below

the X-axis (according as a„ is positive or negative).

If f(x) is a polynomial of odd degree, the infinite branches of

the graph of y =^ f(x) are on opposite sides of the x-axis (below

the a;-axis on the left and above the a>axis on the right, if a,^>0

;

above the ic-axis on the left and below on the right, if a^<0).

From these theorems and from the continuity of the function

f(x) we derive the following corollary.

The graph of a polynomial f{x) ofodd degree with real coeffi-

cients must cross the x-axis at least once and, if it crosses more

than once, it must cross it an odd number of times. The graph

of a polynomial of even degree with i-eal coefficients either does

not cross the x-axis at all or it crosses it an even rmmber of times.

293. The Zeros of a Polynomial /(x). The Roots of the

Equation /(x) = 0. A value of x for which f(x) — is called

a zero of f{x) ; i.e. if f(b)= 0, then 6 is a zero of f(x). The

zeros of f(x) are, therefore, the values of x which satisfy the

equation/ (a;)= 0. The zeros of /(a;) are called the roots of the

equation f(x)= 0. The factor theorem (§ 261) tells us that if

a is a zero of f{x), then a; — a is a factor of f(x). Since a

polynomial of degree n cannot have more than n distinct fac-

tors of degree one, we may state the following theorem.

A polynomial f(x) of degree n cannot have more thann dis-

tinct zeros.

Since at the turning points of f(x) the slope is always

zero, it follows from the fact that the derived function is of

degree n — 1 that a polynomial f{x) of degree n cannot have

Tnore than n — 1 turning points {maxima andminimxi).
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294, The Number of Roots of /(x) = 0. We have seen that

every quadratic equation has two roots which may be real or

imaginary and which may be equal. We have also seen that

every cubic equation f(x) = 0, whose coefficients are real, has

at least one real root. If this root be ri, we may write (§ 261),

f{x) = (x — rj Qix), where Q(x) is a polynomial of degree 2.

The latter has two zeros, real or imaginary, so that any cubic

function with real coefficients may be resolved into 3 linear

factors,
^(^) ^ ^^(^ _ ^^)(^ _ ,,^)(^ _ ^^y

It may be proved that any polynomial {no matter whether the

coefficients are real or imaginary) has at least one zero (real or

imaginary). This statement is called the fundamental theorem

of algebra. We shall accept it as valid without proof, since

its proof is too difficult for an elementary course.* From this

theorem it is easy to prove the following theorem :

Any polynomial f(x) of degree n may be resolved into n linear

factors.

Proof : By the fundamental theorem, f(x) has one zero.

Denote it by r^. The factor theorem then gives

f{x)^{x--r,)Q,{x),

where Qi is a polynomial of degree n — 1. By the funda-

mental theorem, Qi{x) has a zero r2. Hence

q,ix) = (oj - ro)Q2(a;), or f{x) = (a; - r;){x - r.,)Q2{x).

Again, Q2(x) is a polynomial of degree n — 2. If n > 2, Qg

has a zero, say r^, which leads to the expression

f{x) = {x- ri) (x - rg) {x - rg) Qz{x),

where Qi(x) is a polynomial of degree n — S. Continuing this

* This theorem was first proved by Gauss in 1797 (published 1799) when he

was 18 years old. For proof see Fine, College Alyelfra, p. 588.
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process we find

/(a;) = (a; - ri)(a; ^ rj) "• (aJ - r„)Q„,

where Qn is a constant which evidently must be a„ if f(x) is

a^Xn + ••• + Oq. We have then finally

f(x) = a^(x - ri)(x - r.2) - (x - r„).

Each of the numbers Vi, r2, •••, r„ is a root of the equation

f(x) = 0. This proves the theorem just stated.

Moreover, no number different from Vi, rg, •••, r„ can be a root

of this equation. For suppose s were such a number, then we

should have /(s) = a„(s — ri){s — r2) ••• (s — r„). Since each

of these factors is under the hypothesis different from zero,

the product /(s) is different from zero. Some of the num-

bers ri, r2, •••, r„ may be equal, however. This possibility

leads to the following definitions. If f{x) is exactly divisi-

ble by a; — r but not by (a; — r)^, then r is called a simple

root of f(x) = 0. If f(x) is exactly divisible by (x — ry but

not by (a; — r)^ then r is called a dovble root of /(x) — 0. If

f{x) is exactly divisible by (a; — r)* but not by (x — r)^^ then

r is called a A:-/oM root, or a root 0/ order k. A root of order

greater than one is called a multiple root. If /(a;) represents

a polynomial, the equation f(x) = is called an algebraic

equation. Then we may state the last theorem as follows :

Every algebraic equation of degree n has n roots and no more,

if each root of order k is counted as k roots.*

EXERCISES

1. Is 1 a zero of the polynomial x'' — Sx^ + 2z* — x-\-S?

2. Is 2 a zero of the polynomial a;* — 16 ?

3. Is 3 a root of the equation x^ + Zx'^-{-x-Bz=0?

* It is logically necessary to note the fact that, if exactly k of the roots

^i> ^2» — equal r, f{x) is divisible by (k — r)* but not by (a; — r)*+i. Why?



458 MATHEMATICAL ANALYSIS [XIX, § 294

4. Find k so that a; =1 is a root of the equation a;^ + A^x^ — x -f 1 = 0.

6. Pind k so that 2 is a root of the equation x^ + x^ — Ax + 3 = 0.

6. How many roots has the equation x'^ + x8 + x + 3 = 0? How
many of these roots are positive ?

7. How many roots has the equation x^— 2 x* + x^— 3 x2+2 x— 1=0 ?

How many of these roots are negative ?

8. Find graphically the real zeros of the functions

(a) xs - X. (6) x3 + 2 X - 1. (c) x^ + 3 x + 2. (d) x^ - x2 - 6 x + 8.

Draw the graph of each of the following functions :

9. t/ =
t^3j [3 x* - 4 x8 - 24x2 + 48 X + 13].

10. y = i^j [3 x* + 8x8 - 6 x2 - 24 X - 12].

11. ?/ = ^Jj [3 X* + 4 x8 - 12 x2 + 24].

12. 2/ = 2 x* - 14 x3 + 29 x2 - 12 X + 3.

13. Prove, without assuming the fundamental theorem of algebra,

that every algebraic equation of odd degree with real coefficients has at

least one real root.

295. Successive Derivatives. The derived function of a

polynomial f(x) of degree n is a polynomial f'{x) of degree

n — 1. The derivative of f{x) is a polynomial of degree

71 — 2, is denoted hy f"(x), and is called the second derivative

of f{x). Similarly, the derivative of f"{x) is called the third

derivative of f(x) and is denoted by f"'{x). Similarly, the

fourth, fifth, etc. derivatives may be found. The nth derivative

of a polynomial of degree n is evidently a constant.

Thus, if /(x)=x*-3x3-7x + 2, we have /'(x) =4x8-9x2 - 7,

/"(x) = 12x2- 18x, /'"(x) = 24x- 18, /i^(x) = 24.

296. Taylor's Theorem. The following formula is known

as Taylofs theorem:

(6) /(x)= /(a)+ /'(a)(x - a)+^ (x - af + ...

+m(x-ar.
n I

This formula enables us to express any polynomial in a? as a

polynomial in a? — a, where a is any constant.
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For example, if we have/(ic)= a:^ _ 4 ^ + 2 and desire to express /(x)

in terms of x + 1, we first find /'(x) = 3 x^ - 4 ; /"(x) = 6 x
;
/'"(x) = 6.

The coefficients in the above formula are, for a = — 1,

/(-l)=5, /'(-1) = -1, /"(-l) = -6, /'"(-1) = 6.

Therefore we have, from (6),

x3 _ 3x + 4 = 5 -(X + 1)- 3(x + l)H(x + 1)3.

Proof. We have seen in § 290 that the derivative of a;* is

kx^~^. Likewise the derivative of {x — a)* is k(x — ay~\ For

if y z=i{x — ay, we have, as in § 289,

y + Ay ={x-\- Ax— a)*=[(a;— a)+ Ace]*

= (x — a)*+ k(x — ay~'^Ax + terms with a factor Aaj^.

Hence

-^ = k{x — a)^^ + terms with a factor Ax,
Ax

and the limit of Ay/Ax is obviously k(x — tt)*~^

Let us now set

(7) /(aj)=4, + A(«- a) 4-^2(0; -a)2+ - + J.,(a;- a)* +-.

We then have, by taking successive derivatives of both sides,

f(x)= ^li + 2 A2{x - a) -f ... + kA,{x - ay-' + ...,

r(x) = 2 ^2+ - + A;(A^ - l)A,(x - af-' + ..-,

/(*)(a;) = Zc ! ^;t + terms containing {x — a) as a factor.

These relations must all be true for all values of x ; hence

they must hold when x = a. But this gives

f{a)=A„ f'{a) = Au /»=2^2,-, /*(«) = A: ! ^„ -.

Hence

By substituting these values in (7) above, we obtain Taylor's
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theorem as given in relation (6). Another form of Taylor's

theorem is obtained by replacing a; by a; + a in relation (6).

This gives

(8) /(x + a)= f(a) +/'(fl)x +^-^x^ + ... +i^x^.

EXERCISES

1. Write down the successive derivatives of the following polynomials :

(a) x8 + 4a;2_i2a;+l7.

(6) 2x*-3a:8 + 8x2-14x + 18.

(c) a;5 + 2 a;- 1.

(d) 1 -3x +4x2 + 5x8.

2. Prove that the nth derivative of a^x" + an-ix"-i + ••• + aix + oo is

equal to OnTi I

.

3. Expand each of the following by Taylor's theorem

:

(a) x3 + 4 x2 — 12 X + 17 in terms of x - 1.

(6) 2 X* - 3 x3 + 8 x2 - 14 X + 8 in terms of x - 2.

(c) x^ + 2 X — 1 in terms of x + 1

.

Id) 1 — 3 X + 4 x2 + 5 x3 in terms of x + 2.

4. By relation (8) in § 296 express each of the following as a polyno-

mial in X

:

(a) /(x-l)if/(x)=x5 + 4x2-12x + 17.

(h) /(x-2) if/(x)=2x4-3x8 + 8x2-14x + 8.

(c) /(x + 1) if/(x)=x6 + 2x-l.
W /(x + 2)if/(x) = l-3x + 4x2 + 6x8.

297. Multiple Roots. If we apply Taylor's theorem succes-

sively to/(ic) and/'(ic), we obtain

(9)/(») =

(10) /'(») =

f\a) +f"{a){x - a)+i^ {x - ay+^^ix - ay+ .....
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If/(a)= 0, the first relation shows that x—a is a factor of /(a;)

;

this constitutes a new proof of the factor theorem. If /(a;) 13

divisible by a; — a but not by {x — ay, it follows that /(a) =n d

and that f'{a)^ 0. Hence by (10), or by the factor theor3n_,

fix) is not divisible by a; — a. If f{x) is divisible by (x — a)-

but not by (x — df, we have, from (9), /(a)=0, /'(a)=0,

f"{a)=^0. We then conclude from (10) that if a is a double

root of f{x)— 0, it is a simple root of f'{x)= 0. In general, if

f(x) is divisible b}^ (x — a)* but not by (x— a)*+\ relation (9)

shows that /(a) =/'(«) =/''(«) =- =/'-'(«) =0; /^a) =?t 0.

Hence, by (10), f'(x) is divisible by {x — a)*~^ but not by

(a? — a) *. This leads to the following theorem.

A simple root of f(x)= is not a root of f\x)=0. A double

root of f(x)= is a simple root of f'{x)= 0. In geyieral, a root

of order k off(x)= is a root of order k — 1 off'(x)= 0.

The following corollary of this theorem is evidently true.

Any multiple root off(x)==0 is also a root off\x)=0. If

f(x) andf'(x) have no common factor, f(x)= has no multiple

roots. If(f> {x) is the H. C. F. off(x) and f'{x), the roots of

<ft (x)=0 are the multiple roots off(x)= 0.

Example 1. Examine for multiple roots the equation

/(x) = x3 4- x2 - 10 x + 8 = 0.

We have /' {x) =Sx'^ + 2x- 10. To find the H. C. F. of /(x) and f\x)
we proceed as in § 259 :

8a8-f3a:2-30x+24
3x8 + 2x2- lOx

x + 1

3x

X2- 20 X + 24

8x2- 60 X + 72

8x2 + 2x -10
-62X + 82

3x2 + 2x- 10

186x2 + 124x -620
-186x2 + 246X

370 X -620

It is now clear that /(x) and /'(x) have no common factor,

we conclude that/(x)= has no multiple roots.

Hence



462 MATHEMATICAL ANALYSIS [XIX, § 297

Example 2. Examine for multiple roots the equation

/(x)=x*-2x3 + 2x-l = 0.

We have /'(x) = 4 x^ - 6 x^ + 2.

2x*-

2x*-

-4x8 + 4x
-3x8+ a;

-2

- x8 + 3x
2x8-6x
2x8-3x2

-2
+ 4

+ 1

3x2-6x
x2-2x

+ 3

+ 1

X 2x3-3x2 + 1

2x3-4x2 + 2x
x2 _ 2 X + 1

a;2 _ 2 X + 1

2x4-1

Hence (x — 1)2 is the H. C. F. of /(x) and /'(x), i.e. x = 1 is a triple root

of / (x) = 0. The fourth root of /(x) = is x = — 1. How is it obtained ?

EXERCISES

1. Examine for multiple roots each of the following equations :

(a) x3-3x2-24x-28=0. (6) x* + xS + 1 = 0.

(c) x5-7x3-2x2 + 12x + 8 = 0.

Id) x5 + X* - 9 x8 - 5 x2 + 16 X + 12 = 0.

(e) x4-6x8 + 12x2-10x + 3 = 0.

(/) x8-3x6 + 6x8-3x2-3x + 2 = 0.

2. Prove that the graph of y =/(x) is tangent to the x-axis at a point

representing a multiple root.

3. Prove that the graph of 2/=/(x) crosses or does not cross the

X-axis at a point representing a multiple root according as the order of

the root is odd or even. [Hikt : Use Taylor's theorem.]

4. Prove that a root of order k of /(x) = is a simple root of

/*-i(x)=0.

298. Complex Roots. If a -\- hi (a, 6 real numbers, i2= — 1)

is a root of an algebraic equation /(«) = with real coefficients,

then a — bi is also a root of the same equation,

By hypothesis a -f- 6i is a root of the equation

f{x) = anx- + a„_iaJ"-^+ ••• + ao = 0,

i.e. f{a + 60 = a^ia + biY+ a„_i(a + bif-^^ + ••• -f Oo = 0.

If each of the terms in the preceding expression be expanded
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by the binomial theorem, the powers of i reduced to their

lowest terms (i^ = — 1, ^s = — i, etc.), and terms collected, we

obtain ^, , t-\ n , r\'

where P represents the sum of the terms independent of i ajid

Q is the coefficient of L

But since P + Qi = hj hypothesis, it follows from § 281,

that both P = and Q = 0. We wish to prove that a — bi is

a root of f(x) = ; i.e. f{a — bi) = 0. To prove this we

merely have to notice that f(a — bi) may be obtained from

the expression for /(a 4- bi) by replacing i by — i. Therefore

f{a-bi)=P- Qi,

where P and Q represent the same quantities as before. But

we have just shown that P = and Q = 0. Therefore

/(a — bi) = or a — 6i is a root oif(x) = 0.

EXERCISES

1. Solve X* + 4 a;3 + 5 a:2 + 2 X - 2 = 0, one root being - 1 + i.

2. Solve a!:* + 4a:S + 6a;2-f4x + 5=:0, one root being i.

3. Solve a;4 - 2 x3 + 5 a;2 — 2 a: + 4 = 0, one root being 1 — i Vs".

4. If a+ Vb (a and b rational but V6 irrational) is a root off(x) =
with rational coefficients, a — V6 is also a root.

[Hint : Show that /(a + y/b) reduces to the form P + Qy/b where P
and Q contain only integral powers of b and Q is the coefficient of Vb.

Since P + QVb = 0, P = and Q = 0. Why ?]

5. Solve 2 x* - 3 a;3 - 16 x2 - 3 X -f 2 = 0, one root being 2 + VS.

6. Form an equation with rational coefficients, of which two of the

roots are i and 1 + \/2.

7. Solve the equation x^ - (4 + V3)x'^ + (5 + 4 V3)x - 5V3 = 0, if

one root is 2 — i.

8. Solve the equation x^ — (5 + i) x^ + (9 + 4i)x — 5 — 5 1 = if one

root is 1+ i. Is 1 -- I a root ?
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299. To Multiply the Roots of an Equation. To trans-

form a given equation f(x)= into another whose roots are those

of /(a;) = each multiplied by some constant 7c, multiply the

second term off{x) by Jc, tJie third term by k^, and so on, taking

account of the missing terms if there are any.

The required, equation is f(y/k) = 0. For, if f(x) vanishes

when X = a,f(y/k) will vanish when y = ka. Hence, if the given

equation is a„a;" -f a^_^x''~^ + ... -f ao = 0, the required equation is

""(!)" +""-©"""' +""=''

which on multiplication by k"" becomes

ttn?/'* H- kan-if"-^ + k'^an-2y''-^+ • • • + k^ao = 0.

If A: = — 1, we have, the roots of f(^x) = are equal respec-

tively to those off{x) = with their signs changed.

Example 1. Transform x^— ^x"^ -{- 5 = into an equation whose
roots are twice those of the given equation. The desired equation is

x^ - 4(2)a;2 + 6(2)3 = 0, or x^ - 8 x2 + 40 = 0.

Example 2. Transform x'' — Sx^-\-4iX^-2x-\-l = into an equa-

tion whose roots are those of this equation with their signs changed.

The result is (-a:)7-3(-x)5 + 4(-x)4-2(-x) + 1 = 0, or

a;7 _ 3 x5- 4 x* - 2 x - 1 = 0.

EXERCISES

Obtain equations whose roots are equal to the roots of the following

equations multiplied by the numbers opposite.

1. x6 - 2 x^ + x + 1 = 0. (2) 3. x4 - x2 + X + 1 = 0. (-3)
2. x7-6x8+2x- 1 = 0. (-2) 4. x^ + x* -x^ + x- 1 = 0. (2)

Obtain equations whose roots are equal to the roots of the following

equations with their signs changed.

5. x7 - 6 x« + 2 X* - X + 1 = 0. 7. x7 - x« + x6 - X* - 2 = 0.

6. xi6 _ 1 = 0. 8. 1 - X - xa - x8 - X* - x6 = 0.
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300. Variations in Sign. A variation of sign or change of

sign is said to occur in f(x) whenever a term follows one oi

opposite sign. Thus the equation o^ — 3 a;^ 4-7=0 has two

variations of sign.

If f(x) has real coefficients and is exactly divisible by x — 7c,

where k is positive, then the number of variations of sign in the

quotient Q{x) is at least one less than the number of variations of

sign infix).

Before proving this statement let us consider the process of

dividing /(a;) = x^-{- x^ — 3 x^— 2 x^ — x^ + b x—lhj x— 1 and

/(x)= a;^ — a^-f- 4 a;2— 13 cc -h 2 by a; — 2, making use of synthetic

division.
• 1 1 _3 _2 -1 5 -1 g.

1 2-1-3-4 1

Q(a;) = l 2-1-3-4 1

1 _1 4 -13 2 |2

2 2 12 -2
Q(a!)=l 16-1

It will be noted in these examples that Q(x) has no varia-

tions except such as occur in the corresponding or earlier

terms of f{x) and that since f(x) is exactly divisible by the

given divisor, the sign of the last term of Q{x) is opposite to

that in f{x). Let us now prove the statement in general.

Proof : From the nature of synthetic division it follows that

the coefficients in Q(x) must be positive at least until the first

negative coefficient of f{x) is reached. Then, or perhaps not

until later, does a coefficient of Q{x) become negative or zero,

and then they continue negative at least until a positive

coefficient in f{x) is reached. Therefore Q{x) has no variations

except such as occur in the corresponding or earlier terms of

f(x). But by hypothesis f(x) is exactly divisible by a;— A; and

2h
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hence the sign of the last term in Q(x) must be opposite to

that in f(x). Therefore the number of variations of sign in

Q(x) must be at least one less than the number of variations

of sign in /(a;).

301. Descartes's Rule of Signs. Theequationf{x)=0 with

real coefficients can have no more positive roots than there are

variations of sign in f(x) and can have no more negative roots

than there are variations of sign inf(— x).

Proof: Let r^, ^2, — , ^^(i? ^ ^) denote the positive roots of

f(x) — 0. If we divide f{x) by a; — ri, the quotient by ic — rj,

and so on until the final quotient Q{x) is obtained, then we

know from the last theorem that Q(x) contains at least p fewer

variations of sign than f{x). But the least number of varia-

tions of sign that Q{x) can have is zero. Therefore f{x) must

have at least p variations, i.e. at least as many variations as

f{x) =0 has positive roots.

Second, by § 299, we know that the negative roots of /(a;)=0

are the positive roots of /(— a;) = and, hence, by the first

part of this proof, we know that their number cannot exceed

the number of variations of sign in/(— «).

It is important to notice that Descartes's rule of signs does not tell us

how many positive and how many negative roots an equation has. It

merely tells us that an equation cannot have more than a certain number

of positive roots, and cannot have more than a certain number of nega-

tive roots.

Example. What conclusions regarding the roots of the equation

/gT _ 4 x5 + 3 a;2 — 2 = can be drawn from Descartes's rule ?

The signs of /(a;) are -f 1— , i.e. there are 3 variations and hence

the equation has no more than 3 positive roots.

The signs of /(— ic) are h + — , i.e. there are two variations and

hence the equation has no more than 2 negative roots.

But the equation is of degree 7 and has 7 roots. Therefore the equa-

tion has at least two imaginary roots. Can there be more than two

imaginary roots ?
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EXERCISES

What conclusions regarding the roots of the following equations can

be drawn from Descartes' s rule ?

1. x^ - 2 x6 + X* - 1 = 0. 4. x^ - 2 X* + x^ - x^ - X + 1=0.

2. x^ + X* — x^ + 1 = 0. 5. x** - 1 = 0. (w odd)

3. x23 - 34 xi2 + X — 45 = 0. 6. x** - 1 = 0. (n even)

7. Show that the equation x^ — 5x2 — x + 10 = has at least two

imaginary roots. How many may it have ?

8. Show that the equation x^ + x^-i-x — 1=0 has two and only two

imaginary roots.

9. Show that the equation x^ + 4 x' + 2 x — 10 = has six and only

six imaginary roots.

10. Can you tell the nature of the roots of the equation x* + ix^ — 3 ix

+ 4 = 0?

302. Equations in ^-form. If each term of the equation

f{x) = a„a;" + a,,_,x^-' + ... + a^ =

is divided by a„ (by hypothesis an ^ 0), we obtain the equation

x^ + p^x''-'^ + PiX""-^+ ... + jp^ = 0,

in which the leading coefiicient is unity and p^ = -^^, etc. An

equation in this form is said to be in the p-form. For many
purposes this is the most convenient form.

303. Rational Roots. A rational root (^0) of the equation

f{x) = when the equation is in the p-form with integral coeffi-

cients is an integer and an exact divisor of the constant term.

Proof. Suppose that the equation f(x)= has a root a/b

where a/b {b > 1) is a rational fraction in its lowest terms.

Then we have

(11) (tf + p/tT' ++pUt) +P, = 0.
I,

- " \b
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Multiplying both, members of (11) by 6"~^ we have

or

(12) T^~ (-^1^""' + ihci^'-^h + - + Pnh^"),

The right-hand member of (12) consists of terms each of

which is an integer. The left-hand member of (12) is a

fraction in its lowest terms. Therefore the assumption

that the fraction a/h is a root of f{x)= leads to an

absurdity.

Now suppose r (:^ 0) is an integral root. Then

rn -hpir"-! -f p^r^-^ -+- ••• -h i?« = 0.

If we transpose the constant term pn and divide by r, we

obtain

(13) r^-i^p^r^-2+ ... -|.p^_^ = _-P2.

r

Now each term of the left-hand member of (13) is an integer

;

hence pn/r must be an integer, i.e. pn must be exactly divisible

by r.

304. To Find the Rational Roots of an Equation with Ra-

tional CoeiKcients. If the equation is not in the p-form with

integral coefficients, reduce it to that form and then make use

of the results in § 303. The following examples will explain

the methods.

Example 1. Solve the equation x^ + S x^ — 4 x ^ 12 = 0.

By Descartes's rule of signs we know that the equation has no more

than one positive root and no more than two negative roots. From the

last article we know that if the equation has rational roots they are

factors of 12. Thus we need only try 1, — l, 2, — 2, 3, - 3, 4, — 4, 6,

- 6, 12, -12.
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By synthetic division we have

1 3-4-12 12

2 10 12
I16 6

The depressed equation * ia x^ -\- ^ x + 6 = (x -^ S)(x + 2)= 0. There-

fore the roots of the original equation are 2, — 3, — 2.

Example 2. Solve the equation 2a:8_^a;2 + 2x + l = 0.

Writing the equation in the |)-form we have

X3 + I X2 + X + ^ = 0.

If we multiply the roots of this equation by k, we obtain

x^-\--kx^-\-k'^x + — =0.
^ z

If we choose k equal to 2, this equation becomes

(14) x^-\-x^-h4:X + 4 = 0,

an equation whose roots are twice those of the original equation.

By Descartes's rule of signs equation (14) has no positive roots. Any
rational roots are then negative, and are factors of 4, i.e. — 1, — 2, — 4.

By synthetic division

1 14 4 |-1
-10-410 4

The depressed equation is a;^ + 4 _ q. Therefore the roots of (14) are

— 1, 2 1, — 2 I and the roots of the given equation are — ^, i, — i.

EXERCISES

Solve each of the following equations.

1. ic« + 5 x2 -f- 15 X + 18 = 0. 4. 6 a;3 + 7 x2 _ 9 x + 2 = 0.

2. xs + x2 + X + 1 = 0. 5. 6 x3 - 2 ic2 + 3 X - 1 = 0.

3. x=i + x2-4x-4 = 0. 6. 2x4+3x3-10x2-12x+8=0.

Find the rational roots of each of the following equations.

7. X* - 3 x2 - 4 = 0. 10. 2 X* - x8 - 5 x2 + 7 X - 6 = 0.

8. x6 - 32 = 0. 11. 2 X* + 2 x3 - x2 + 1 = 0.

9. X* + x8 + x2 + X + 1 = 0. 12. 4 x* - 23 x2 - 15 X + 9 = 0.

* If r is a root of a given equation /(.x*) = and f(x)= (x — r)Q(x), then the

equation Q{x)= is called the depressed equation.
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306. The Solution of an Equation with Numerical Coeffi-

cients. The preceding articles furnish a number of methods

for attacking the problem of finding the roots of an algebraic

equation/ (a;)= with given numerical coefficients.

(1) We may examine the equation for multiple roots (§ 297).

(2) If the equation f{x)= has rational coefficients, we can

find all the rational roots by a finite number of trials.

(3) When any root a has been found, we may divide f(x) by

X — a and thus make the finding of the remaining roots depend

on an equation of lower degree (the depressed equation).

306. Irrational Roots. Graphical Approximation. In order

to compute approximately any one of the real irrational roots

of an equation/ (a;) = whose coefficients are real numbers, we

require first a rough approximation to the root which is to be

computed. The graph of y =f(x) is a powerful tool for this

purpose. An example will make the method clear.

Example. Locate approximately the real roots of the equation

f(x) = x6 - ISx'-^ + 2 a; + 5 = 0.

A table of corresponding values of x and

f(z) is as follows.

I^'
-4^

7ko_

::::^:i::i-::
:i:::|?:i::d=:
::::4?:i::: i:

-^ f-

1)^^ uy

:E/:E:::E:E:E:

X -2 - 1 1 2 3

/(a;) -83-11 6 -5 - 11 137

Fig. 262

Figure 252 exhibits a rough graph of this

function constructed from this table. We
conclude that a root of the equation lies

between — 1 and 0, another between and 1

,

and a third between 2 and 3.

Moreover Descartes 's rule tells us that this

equation can have no more than two positive

roots and no more than one negative root,

since there are only two changes of sign in

f(x) and only one in/(— x).

We have therefore located all the real roots

of this equation.
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A more accurate construction in the neighborhood of one of these points

enables us to get a better approximation. For example, the values x = 2.2

and 2.3 give us respectively y = — 1.97 and 6.21. By drawing a smooth

~ -T--

4* -.^^
" ^: :
^^ -rr

,t
2-0 -2- Ir- 2-e^',../

'

^ i*

^^'
,''

**

, *
*'

— *^^ - - __ -"- - -

Fig. 253

curve through the three points corresponding to x = 2, 2.2, 2.3 (plotted

on a large scale, Fig. 253) we may estimate the root of f{%) = to be ap-

proximately 2.23.

307. Newton's Method of Approximation. Having found a

first approximation to a root of an equation /(«)= 0, we may
secure a better approximation by a

method first suggested by Sir Isaac

Newton (1642-1727). In Fig. 254 let

GC represent the graph of y—f{x) in

the neighborhood of a root a? = a of the

equation. Let OM^ — x^ represent the

approximation to the root found ; let

M^Px = ^1= /(xi). Let the tangent to the

graph at Pi(iCi, y-^ cut the a;-axis in T.

The abscissa OT will then, in general, be a much closer

approximation to the desired root. The equation of the

tangent at Pj is

(15) 2^-/(^i)= /'(^0(^-a^i).

Placing 2/ = and solving for x we have

Fig, 254

(16) 052= OT=Xy /fe)
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where x^ denotes our second approximation. We have then

(17) ^2 = JCi + ^1,

where the correction hi is given by

(18) K = -f^.

Example. Find by Newton's method a better approximation to the

root X = 2.23 of the equation x^ — 13 x''^+ 2 ic4- 5 = discussed in § 306,

f(x) = ic5-13x2 + 2a; + 5.

/'(x) = 5a:*-26x + 2.

/(xi)=/(2.23)=-0.039.»

/'(xi)=/'(2.23)=67.67.»
Hence we have

^~
/'(a^i) 67.67

whence X2 = 2.23057.

308. The Accuracy of Newton's Method. A question that nat-

urally arises is : How accurate is this root, i.e. to how many decimal

places is it correct ? Taylor's theorem gives us information on this point.

We have
,^

(19) /(xi + ;iO =/W + /'(^i)'^i+'^-^^^i'+ -.

If our first approximation to the root is x = Xi and hi is the correction,

f

Newton's method gives to ^i a value which makes the sum of the first two

terms of Taylor's expression vanish. Since h\ is very small, the terms

beyond the third (involving h\^ and higher powers of ^i) are insignificant

fii (xA
compared with the term

, . h^. Hence for our purpose we may write
2i I

(20) /(a:i + Ai) = i/"(a;i)A;2.

In the example considered above we have

/"(x)= 20x3-26. /"(a^i) =/"(2.23)= 195.8.

hi^ = (0.00057)2 = 0.00000032.

Hence we have

\f"{x{)hi^ =/(xi + h{) = 0.0000313.

Use synthetic division to get these values.

t In the example just cousidered ^i = 0.00057.
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Moreover
^,^^^ ^ ^^^ ^^,^^^^ +r{x{)h, + ..-,

and in this example /'(aii + hi) = 67.67 + 0.11 = 67.78 approximately. It

follows that the new correction is about

;i2 =^/(?l+M<_ 0.000001.
f'{xi + hi)^

Therefore we may conclude that x = 2.23057 is the root sought, to five

decimal places.

EXERCISES

Find to three places of decimals the irrational roots of the following

equations.

1. a;3 + 3x + 20=0. 2. a;^ + 2x2 - a; + 3 = 0. 3. a^ + a;-l = 0.

4. a:8 + 4 a;2 _ 6 = 0. 5. x^ + Sx"^ - Sx-1 = 0.

6. If X is the cosine of an angle and y is the cosine of one third of the

angle, then 4 y^ = 3 ?/ + x. Find the value of cosine of 20° to three places

of decimals.

7. An open box is to be made from a rectangular piece of tin 9 x 10

inches, by cutting out equal squares from the corners and turning up the

sides. How large should these squares be so that the box shall contain 59

cu. in,?

8. Find the cube root of 12 ; 45 ; - 37.

309. The Relation between Roots and Coefficients. If

fit ^2) •••? ^„ are the roots of the equation x"" + picc""^ 4-
P2^"~2 _|_

—hPn = 0, then

x^
-{- PiX""-^ -\- PiX""-^ + ... -\-p„=(x-r{){x-r2)-{x-r,;).

If we carry out the indicated multiplication in the right-hand

member and equate the coefficients of like powers of x, we '

have

(21) Pi = -ri-r2 r,,

(22) JP2 = nrz + nra + ... + nr^^ + r^n + - + »*n-iV

(23) Ps = - ^1^2?*3 - r^r^U ^n-2^n-l^n.

(24) P«=(-l)Vir,...r,.
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That is,

—Pi= the sum of the roots.

JP2 = the sum of the products of the roots taken two at a time.

— Pg = the sum of the products of the roots taken three at a time.

(— lyPn = the product of all the roots.

We have at once the following corollaries

:

1. To transform an equation into another whose roots are those of the

original equation each midtiplied by m, multiply p\ by m, p2 by m^, p^ by

m^, and so on (§ 299).

2. To transform an equation into another whose roots are equal to

those of the original equation with their signs changed, change the signs

of the alternate terms, beginning with the second.

Example 1. Solve the equation 2y:^— x'^ — 9>x + ^ = Q given that

two of the roots are equal in absolute value but opposite in sign.

Let the roots be r, — r, and s.

Then r — r + s = \,

rs — rs — r^ = — 4:,

-r2s=-2.
Therefore s = ^ and r = 2 or — 2, i.e. the roots are ^, 2, — 2.

EXERCISES

1. Solve a* + x* — 4 5c — 4 = 0, given that the sum of two of the roots

is zero.

2. Solve x^ — 6 a;3 — 9 x2 + 54 x = 0, given that the roots are in arith-

metic progression.

3. Solve X*- 16 x3+ 86 x^- 176 x + 105 = 0, given that the sum of two

roots is 4. Ans. 1, 3, 5, 7.

4. Solve 4 x8 — 20 x2 — 23 X — 6 = 0, two of the roots being equal.

5. If n, ro, rs are the roots of x^ — 5 «'-* + 4 x — 3 = 0, find the value

of each of the following expressions

:

(a) ri2 + rz^ + n^.

(6) ri^ -\- r2^ + ra,^

(c) riV + ri^rs^ + r^^rs^.

(d) ri^ri + r-i^r^ + r2'Vi + rz'^rs + rs^i + r^^r^.



CHAPTER XX

DETERMINANTS

310. Determinants of the Second Order. Expressions of

the form aib2 — a^bi , where a^, tt2, 61 , 62 ^'^^ ^^J numbers, arise

often in mathematical analysis. Thus the area of a triangle

with one vertex at the origin and the other two vertices at the

points (ai , bi), (a2 , 62)? is equal to ^{aib^ — a26i) (§ 195). Again,

the solution of a pair of simultaneous linear equations in two

unknowns (§ 69) can be written as two fractions whose numer-

ators and denominators are all of this form. (§ 311.)

The expression aib^ — ^2^1 ^^J ^^ written in the form

I

ai bA

and is then called a determinant of the second order. Such a

determinant contains two rows and two columns. The numbers

«i > «2 J ^1 J ^2 J
are called the elements of the determihant. The

two elements ai, 62 form the so-called principal diagonal.

To evaluate a determinant of the second order, i.e. to find

what number it represents, one merely has to subtract from

the product of the terms in the principal diagonal the product

of the other two terms. Thus we may write

tti bi

0"2. ^2

= aib^ — a^bi
;

4 7

3 -6
= (4)(-6)-(3)(7)=-45.

It is important to notice that each term of the expansion

contains one and only one element from each row and one and

only one element from each column.

475
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311. Simultaneous Equations in Two Unknowns. Let the

equations be

(2)
1 OgflJ + 62S/ = C2.

If we solve these equations by the usual method of elimination

(§ 69), we obtain

(3)
C162 ~ ^2^1 ^l^ — ^2^

""
aib2 — a^hi ' "" 0162 — a2&i

'

provided a^h^—a^hi^O. We at once recognize the fact that

these results may be written in the form

(4) x =

Ci 61 ai Ci

C2 62 02 C2

«! h
'} y —

«! &1

^2 &2 02 &2

provided 0162 — c^h =^ 0. The following points should be noted

in the above solution.

(1) The determinants in the denominators are identical and

are formed from the coefficients of x and y in the original

equations.

.

(2) Each determinant in the numerator is formed from

the determinant in the denominator by replacing by the

constant terms the coefficients of the unknown whose value

is sought.

Example. Solve by determinants the simultaneous equations

(2x-y = l,

[Sz + 2y = S.

Solution :

1 -1 2 1

3 2 6
= 7' y=-

3 3

2 -1 2 -1
8 2 3 2
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EXERCISES

Evaluate each of the following determinants

^ 14 61 ^ I

— sin a — cos a I

1 • 3.
1
3 1

1

I
cos a sin a

I

12 a 61 Itan^ sec^l

c — d\ ' sec ^ tan d

I

sin e cos 6

sin a cos a

2.

6. Show that the normal form of the equation of a straight line

(§ 205), may be written in the form

.* " Up.— sm a cos a
\

Solve by the use of determinants the following pairs of equations :

f2x + y = 3, g

\ 6x^ y = 4.

Ax- Sy_= 2,

¥—

•

9.

x + y = l,

3 *^ 3

10.

11.

ic sin ^ 4- y cos ^ = sin 0^

xcosd {yemd = cos 6.

X -\- y tan ^ = sec^ 6,

X sec2 d +yctne = sec* ^ + 1- ^ns. 1, tan e.

Prove the following identities and state in words what they show.

12.

13.

14.

15.

16.

ai &i Ol 02

0,2 62 61 62

dl Oi

02 O2
= 0.

ai 61

a2 62

mai ?)i

maa 62

(ai + 5i) 61

(a2 + &2) &2

= r»

61 ai

62 02

«i &i

02 62

aa 62

* For example, Ex. 12 shows that in a second-order determinant if the cor-

responding rows and columns are interchanged, the value of the determinant

is not changed.
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312. Determinants of the Third Order. To the square

array

bi Ci

(5) O2 C2

^3 Cs

we assign the value

(6) aidgCg + azhci + ag^iCz — 016302 — aa^iCg — a^bzCi

and the name determinant of the third order.

The expression (6) is known as the development or expan-

sion of the determinant, the numbers ai, hi, etc., as the elements,

and the elements Oi, 62, Cg as the principal diagonal.

It is important to notice that in the development (6) each

term consists of the product of three elements, one and only-

one from each row and one and only one from each column.

An easy way of obtaining the expansion (6) of the deter-

minant (5) is as follows :

Form the product of each element of the first column by the

second-order determinant formed by suppressing both the row

and column to which the element belongs. Change the sign of

the product which contains the element in the first column and

the second row and take the algebraic sum of the three products.

Example 1.

Example 2.

Example 3.

a\ 61 ci
62 Co hx Ci &1 Ci

ai 62 C2 = a\ -a'i + as
hz ca hz cs 62 C2

az 63 C3

ai&2C3 — ai&3C2 — «2^iC3 + «2&3Ci + a^biCi — azbiCi.

2 3

-6 4

4 -1

3 1

-1
6

+ 6
il + ^U

= 2(4 + 7)-H 6(3 + 2) + 4(21 - 8)= 99.

= 3 = 3(_2-20): m.
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EXERCISES

Evaluate each of the following determinants.

1.

2 1 3

1 1 -1
1 1 2

2.

-1 1 5 -2
-2 2 . 3. 6 -3

3 5 1 7 -4

41 la 6 c

6 <r c

c a 6

6. In § 196 it was shown that the area of the triangle whose vertices

are Pi(a:i, yi), P2(2C2, 2/2)1 ^3(^:3, tjs) is

^[Xi?/2 - X2?/l + 3^22/3 - X3?/2 + Xa^l - Xi^s]-

Prove that the area of this triangle is

xi yi 1

I X2 y2 I

X3 VZ 1

6. Using the result of Ex. 5, find the area of the triangle whose

vertices are

(a) (2, 1), (3, !),(-!, 7);

(6) (3,2), (3, 6), (-1,-4);
(c) (0, a),.(0, -a), (&, 0).

7. Prove that the three points Pi(xi, ?/i), P2(a;2, 2/2), P3(a53» ys) are

coUinear if, and only if.
a^i yi 1

X2 y2 1

X3 yz 1

8. By means of determinants show that the three points (a, & + c),

(&, c -\- a), (c^ a + b) are collinear.

9. By use of determinants determine whether the three points (0, 0),

(1, 1), (5, 6) are collinear.

10. Prove that the equation of the straight line through the points

Pi(a:i, t/i), P2(X2, 2/2), is

= 0.

X y 1

Xi yi 1

X2 2/2 1

11. By determinants find the equation of the straight line through each

of the following pairs of points!

(a) (2, 1), (3, 7) ; (6) (6, 1), (2, - 1); (c) (7, 1), (9, 1).

12. Find by the use of determinants whether the three lines 3 a;— y—

7

= 0, 2x4-j/ + 2=:0, a: — y = are concurrent or not.
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equations be

(7)

313. Solution of Three Simultaneous Equations. Let tha

aiOJ 4- 6i2/ + CiZ = dj,

If we solve these three simultaneous equations by the usual

method of elimination, we obtain,

dibzC^ + dzbsCi + dsbiCz — dzb2Ci — dih^^Cz — d^bic-^

(8)

~~
ciiboCs + ota^gCi + a^biCz — a^bzCi — aib^Cz — azbic^

_ aid2Cs + a2C?3Ci + a^diC2 — a^doC} — ai(?3C2 — aodiC^

z = «]&2C?3 + «2^3C?1 + «3^1<^2 — «3^2f'l

«i&2C3 + (hbsCi -\- (136102 — 0362^1

O163CZ2 — OL^id^

^1 &1 Ol

C?2 62 Ci

C^3 &3 C3

«1 bi Cl

tti b. C2

<h h C3

cti ^1 Cl

<H (i2 C2

V —r.
as d. C3

if

«! bi Cl

a2 &2 C2

^3 ^^3 C3

ai &i C?i

ag &2 d,

^3 63 C?3

ai ^^1 Cl

ag 60 C2

03 &3 C3

provided the denominator of each fraction is not zero. These

results may be written in the form

(9)

Each denominator is the same determinant, which is called

the determinant of the system. It is made up of the coefficients

of X, tfj z. Each determinant in the numerator is formed from

the determinant in the denominator by replacing the coefficients

of the unknown whose value is sought by the constant terms.

Compare this rule with that given in § 311.

ExAMPLB. Solve the following equations by determinants

:

f6x-22=-2,-3y-4;2 = 7,

2x-6j/ = -10.
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Solution.

-2 -21
7 -3 -4

-19-5 ol

u -2
-3 -4
-5

224

112
= -2;2/ =

5 -2 -2
7 -4

2 -19 -336
5 -2 - 112

-3 -4
2 -6

5 -2
-3 7

2 -5 -19
5 -2
-3 -4

2 — 5

448

-112

3.

EXERCISES

Expand each of the following determinants :

4.

Solve by determinants each of the following sets of equations ;

2 3

4 -1
-1 4

3

2

1

1 1 1

a h c

a2 62 c2

-7 1

2 -2
4 2

2

-6
4

a h g

h b f
g f c

a; z z

a; y y

y z X

[4aj4-5y + 22r = 20,

6.
j 3 X - 3 ?/ + 5 5! = 12,

[5x + 22/-40=-3.
Ans. (1, 2, 3).

[x-^y \-z=\,
8. ax -f- 6y + cs = d,

[ cC^x + 6'^?/ 4- c-z = d^.

10. Solve the equation

7.

3x + y-z = 3,

x + y + z =7,
2x + 4y -\-z=12.

ax + y — z = a'^ + a — l,

— x + ay-\-z = a^— a-\-l,

x — y + az = a.

Ans. (a, a, 1),

1

-1
5

0.

11. Solve for x and y the simultaneous equations

2i

x+1
3

y

2 1

X -1
2 1

= 0,

X

-2
y

0.
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12. Evaluate the determinant

sin a cos /S 1

cos a sin /3 1

1 1 1

Prove the following identities and express in words what they prove.

See Ex. 12-16, pp. 477.

13.

15.

17.

«! &i Ci

a^ hi C2

az h C3

«! tti &i

Gi a^ bi

as «3 &3

ai tti «3 ai 61 Cl

bi bz 62 . 14. a2 62 C2 = -

Cl C2 C3 ^3 bs C3

ai bi Cl

as bz C3

a2 62 C2

0. 16.

max 61 Cl

ma2 62 C2

maz bz cz

ax 61 Cl

as &2 02

as 68 cs

(ai + 61) 61 Cl

(«2 + 62) 62 C2

(as + bz) bz C3

ai bx Cl

a2 62 C2

az bz cz

314. Inversions. Let us consider the permutations of a set of ob-

jects, such as letters or numbers, and let us fix a certain particular order

of the objects which we shall designate as the normal order. An inversion

is said to occur in any permutation when an object is followed by one

which in the normal order precedes it. Thus if abed is the normal order,

then there are two inversions in bade. If 1234 is the normal order, then

there are three inversions in 1432.

Theorem. If in a given permutation, two objects are interchanged,

the number of inversions with respect to the normal order is increased or

decreased by an odd number.

Let us consider the permutations Xrs Y and Xsr Y, where X and ;i"

denote the groups of objects which precede and follow the interchanged

objects r and s. Any inversion in Xand Fand any inversi(m due to the

fact that X, r, s precede Y are common toXrs Y and Xsr Y. Therefore, the

number of inversions in Xrs Y is equal to the number in XsrY increased

or decreased by 1 (according as rs is or is not in the normal order).

Now let us consider two objects such as r and s separated by i objects.

If the objects r and s are interchanged, the number of inversions is still

changed by an odd number. For, by f + 1 interchanges of adjacent pairs

the object r can be brought into the position immediately following s, and

by i further interchanges of adjacent pairs, s may be brought to occupy



XX, § 316] DETERMINANTS 483

the position formerly held by r. Each of these (i -f 1) + i = 2 i 4-

1

interchanges of adjacent pairs has increased or decreased the number of

inversions by 1. Hence the net result of these 2^ + 1 interchanges has

increased or decreased the number of inversions by an odd number.

315. Determinants of the nth Order. The square array

(10)

ai 6i

a2 62

an K
of n^ elements, such as we have considered for the cases n = 2, w = 3, is

called a determinant of the nth order and will be denoted by the Greek letter

A. This determinant will he understood to stand for the algebraic sum of

all the different products of n factors each that can be formed by taking

one and only one element from each row and one and only one element

from each column, and giving to each such product a positive or negative

sign according as the number of inversions of the subscripts {normal

order 1, 2, •••, n) is even or odd, when the letters have the normal order

ab -'-q.

It should be noted that from the remarks in § 314 it follows that if we
arrange the elements in any product so that the subscripts are in normal

order, we can determine the sign of each term, by making it positive or

negative according as the number of inversions of the letters is even or odd.

316. Properties of Determinants. Theorem 1. The expan-

sion of a determinant of order n contains n ! terms.

Proof. There are as many terms in the expansion of a determinant

of the nth order as there are pennutations of the subscripts 1, 2, 3,---, n.

But this number is n ! (§ 269)

.

Theorem 2. If each element of any row or column is multiplied by any

constant m, the value of the determinant is multiplied by m.

Proof. Since by the definition of a determinant, each term of the ex-

pansion must contain one and only one element from each row and each

.column, the factor m will appear once and only once in each term of the

expansion. If m is factored out of this expansion, the remaining factor

is the expansion of the original determinant.
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Illustration.

inaib2C3-\-ma2b3Ci+mazbiC2—maibzC2 — mazbiCz — mazbiPi

moi bi Cl

mctz b2 C2 = mt

maz bz cz

= m
ai bi Cl

02 bz C2

az bz cz

Theorem 3. The value of a determinant is not changed if roics and
columns are interchanged, so that the first row becomes the first column,

the second row the second column, and so on.

This follows at once from the definition of the determinant and the

paragraph immediately following it (§ 815)

.

Theorem 4. If two rows or two columns of a determinant are inter-

changed, the sign of the determinant is changed.

Illustration. See Ex. 14, p. 477, and Ex. 14, p. 482.

Proof : Since by Theorem 3 rows and columns may be interchanged

without affecting the value of the determinant, we need only consider the

interchange of two rows. First, if two adjacent rows are interchanged,

the order of the letters in the principal diagonal and in each term of the

development is left unchanged. However two adjacent subscripts in each

term of the expansion are interchanged, and hence the sign of every term
is changed. Why ?

Next consider the effect of interchanging two rows separated by k inter-

mediate rows. By k interchanges of adjacent rows, the lower row can be

brought just below the upper one. Now the upper row can be brought

into the original position of the lower row Toy k -\- 1 further interchanges

of adjacent rows. Therefore interchanging the two rows is equivalent to

2k-\-l interchanges of adjacent rows. But 2 A; + 1 is an odd number and
therefore this process changes the sign of the determinant.

Theorem 5. If two rows or two columns of a determinant are identical,

the value of the determinant is zero.

Proof : Let A be the value of the determinant and let the two identi-

cal rows or columns be interchanged. Then, by Theorem 4, the value of

the resulting determinant is — A. But since the rows or columns which

were interchanged were identical, the value of the determinant is left

unchanged. That is to say, A =— A or 2 A = 0, or A = 0.

Corollary. If all the elements in any row or column are the same
multiples of the corresponding elements in any other row or column, then

the value of the determinant is zero.
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317. Minors. If we suppress the row and the column in which any

given element appears, the determinant formed by the remaining elements

is called the minor of that element.

Illustration. In the determinant

the minor of az is

ax 6i Cl

az &2 C2

«3 &3 cz

and the minor of Cs is

The minor of a\ is denoted by A\, of hj by ^y, etc.

hi Cl

bs Cs

«i bi

Cl2 62

EXERCISES

1. Prove that

2 2 3

1 1 5

4 4 9

= 0. 2. Prove that

3. Prove that

4 5 6

2 1 5

1 5 3

=
4 2 1

5 1 5

6 5 3

•

4. Prove that

3 4 5

2 4 1

8 4 5

' = -
4 3 5

4 2 1

4 8 5

•

6. Prove that

4 1

3 -1
2 2

1 3

5 4

6 5 3

5 -1 -3
2-3 6

3 2 9

-1 1 12

= 0.

6. Prove that

26 9

28 18

30 3 <

-5

10

25

= 30

13

14

15

3 -1
6 2

1 -5

3 5 8 1

1 2 5 =0.
2 4 10

7. How many inversions are there in the arrangement 4213765 if the

normal order is 1234567 ?

8. How many inversions are there in the arrangement 46321 if the

normal order is 42316 ?
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9. Find the value of the minor of 5, of 6, of 7, for the determinant

4 5 1

3 6 2.
2 7 8

10. Write down the minor of as, of C2, of 64, for the determinant

[1 &i ci di

I2 62 C2 di

64 C4 d^

11. Show that

1 2 5-1
3 3 6 2

4 2 7 3

5 15 4

1 6 4 3

2

5

12 3

5 7 6
= -

1 4 3 2

2 12 3

15 4 3

14 3 2

5 5 7 6

318. Additional Theorems.— The following theorems will be

found useful in evaluating determinants.

Theorem 6. Laplace's Expansion. If the product of each element

in any row or column by its corresponding minor be given a positive or

negative sign according as the sum of the number of the row and the num-
ber of the column containing the element is even or odd, then the algebraic

sum of these products is the value of the determinant.

Proof : First, it is evident that in the development of the determinant,

Ai is the coefficient of ai. For Ai is a determinant of order n — 1 in the

elements a2, •••, a„, and its expansion contains a term for each permuta-

tion of 2, 3, ••-, n. Moreover, the signs of the terms are correct ; for, the

number of inversions is not changed by prefixing ai.

Second, let us consider the element e situated in the zth row and the jth

column. We can bring this element to the leading position, i.e. first row
and first column, by i — 1 transpositions of rows and j — 1 transpositions

of columns, i.e. hji-\-j — 2 transpositions in all. Therefore the sign of

the determinant will have been changed i + j — 2 times. That is, if i + j

is an even number, the sign of the determinant is left unchanged ; while if

t+jis an odd number, the sign of the determinant is changed. Now
that the element under consideration is in the leading position, we know
from the first step that its coefficient is its minor. Since the relative posi-

tions of the elements not in the ith row or the jth column are not effected

by these transpositions, the minor of the element in its original position

is the same as the minor of the element when it is in the leading position.
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Hence the coefficient of the element e, which is situated in the ith. row

and the jth column, is (— ly+J E, where E is the minor of the element e.

Corollary, If in the development of a determinant by minors with

respect to a certain column (row) the elements of this column {row) are

replaced by the corresponding elements of some other column {or row),

the resulting expression vanishes.

= aiAi — azAi + dsAs — a^A^i.

We wish to show that, for example, 61^1 — 62^2 + 63^3 — b^Ai is

zero. This expression is zero, for we have replaced the column of a's by

the column of ?)'s and hence the determinant has two columns identical.

The same proof applies to a determinant of order n.

Theorem 7. If each of the elements of any row or column of a deter-

minant consists of the sum of two numbers, the determinant may be

expressed as the sum of two determinants.

Proof : Let

Illustration.
ai bi Cl di

a2 62 C2 d2

as 63 ca da

a4 64 C4 d.

(ai + a'l)

(a2 + a'2)

{an + a'„) 6, Qn

be the given determinant. Expanding in terms of the first column we
have
(ai + a'i)Ai - (aa + ^'2)^2 + (aa + a'3)^3 +••• + (- 1)'*-K«» + «'n)^n

or [aiAi — a^Ai + azA^ + ••• + (— l)"-ia„A]

+ [a'1^1 - a'2^2 + a'3^3 + ••• + (- l)"-ia'„J„],

«1 bi qi

02 62- '; +

an bn- •Qn

a'l

Theorem 8. If to the elements in any row {or column) be added the

corresponding elements of any other row {or column) each multiplied by

a given number m, the value of the determinant is unchanged.

The proof of this theorem follows easily from Theorems 7, 6, and 2.
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319. The Evaluation of Determinants. We are now in a posi-

tion to expand a determinant of any order. The following examples will

illustrate the methods employed.

Example 1. Expand

A =

Multiply the first column by
columns. It gives

A =

27

28

29

1 and add it to the second and third

25 26

26 27

27 28

25 1 2

26 1 2

27 1 2

By the corollary of Theorem 5, the value of this determinant is 0.

Example 2. Expand the determinant

2-16
A =

1

14 6 3

4 2 7 4

3 12 5

We seek to transform this determinant in such a way as to make all

the elements but one in some row or column 0. The second column

looks most promising. We accordingly add 4 times the first row to the

second row (this replaces the 4 in the second row by 0); we then add 2

times the first row to the third row (Why?) ; and then add the first

row to the fourth row (Why ?) These operations give

A =

2-1 5 1

9 26 7

8 17 6

5 7 6

9 26 7

— 8 17 6

5 7 6

—
2 26 7

2 17 6

1 7 6

The last determinant may be still further simplified as follows

;

A =
2 26 7

2 17 6

-17 6

__ 140 191

-"131 18|-

= _ (162-31):

40 19

31 18

-17 6

9 1

31 18

131.

* This determinant is obtained from the preceding by subtracting the

elements of the last column from those of the first.
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EXERCISES

Evaluate the following determinants.

5.

14 13 — 121

17 16 17 .

25 24 -18

34 23 12

23 34 21 .

14 35 26

18 26 24

29 39 49 ,

37 35 11

2 --2 1 1

1 --1 4 2

2 --2 1 -1 •

2 1 -1

3 4 -2 6

4 --3 8 -4
2 8 3

1 4 1

23 24 25 26

12 13 14 15

32 33 34 35

2 2 2 2

7.

8.

b c + d

c b + d

d 6 + c

2 a a^

a + b ab

2b 62

abed
6x00
c y

d z

10.

11.

1 1 1

a 6 c .

a2 62 C2

1 1 1 1

a 6 c d

a2 62 C2 (22

a8 68 C« (28

12. abed
a 6 c (2

a — 6 c 5

a — 6 — c (2

13. Prove that if a determinant v^hose elements are rational integral

functions of some variable, as y, vanishes when y = 6, then y — b is a

factor of the determinant.

[Hint : Use the corollary of theorem 6.]

14. Solve by factoring Examples 10, 11, 12.

15. Factor into two factors

a b c

b c a

cab
16. Factor

a a2 be

b 62 ca

c C2 ab
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320. Solution of a System of Linear Equations. Suppose we
have n linear equations in n unknowns and we desire their solution. Let

the equations be

(11)

aixi H- 6ia;2 + Cia-3 +
a^Xi -f biXi + C2Xs +

+ P\Xn = gi

QnXl + \X2 + CnXs + ••• + PnXn= ^n

Let A be the determinant of the cofficients of the unknowns, i.e.

(12) A=

ax 6i •
.. px

at 62 . •• Vi

an K • •• Vn

The determinant A is called the determinant of the system. Multiply

the equations by ^1, — J.2, Az, — A4, etc., respectively, and add the re-

sults. Then we have

(13) Xi(aiAi — a^Az •••) + X2(hiA\ — h^Ai •••)+ •• + ic„(pi^i-p2^2---)

= qiAi—qzAi ••••

From the corollary of Theorem 6 it follows that the coeflBcient of x\ is

A and that the coefficients of the other unknowns are zero. Moreover,

the right-hand member of (13) is the expansion of A if we replace the

column of a's by the column of constant terms. This determinant will

be denoted by A^^. Therefore we may write

or

provided A rjt 0.

Similarly

provided A :?t 0.

A . iCi = Ao

A

Xi-^

It will be noticed that this is a direct extension of the methods employed

in §§ 311, 313. The result may be stated in words as follows. The value of

any unknown is equal to a fraction whose denominator is the determinant

of the system and whose numerator is the determinant obtained from the

former by replacing the coefficients of the unknown sought by the column

of constant terms.
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321. The Case A = 0. The previous methods show that, even if

A = 0, we can derive from the given equations the relations

A . a:i = Aog, A • X2 = A^g, •••, A • a:« = Apq.

Now if A = 0, th6se relations would imply that

Aa3 = 0, A5, = 0, ..., Ap5 = 0.

But it is easy to write down a system in which A = and one or more of

the Aog, Aftg««-are not zero. Such a system is then clearly inconsistent

and has no solution. For example, 2 xi + X2 = 1, 2 Xi + a;2 = 2.

If Aag = Afeg = ••• = Apg = 0, the system may be consistent but the un-

knowns Xi, iC2, •••, Xn are not then completely determined. For example,

2 xi + 3^2 = 1, 4 jci + 2 X2 = 2.

A complete discussion of this case is beyond the scope of this book.*

322. Consistent Equations. Equations which have a common
solution are called consistent. Consider the three equations in two un-

knowns X and y :

(14) aix + biy -|- ci = 0.

(15) a2X + h-iy + C2 = 0.

(16) azx + hzy + Cg = 0.

Two cases arise according as to whether a pair of the three equations

has a single or an infinite number of solutions.

Case 1. A single solution. In order that these three equations be con-

sistent it is necessary that

Cl h
C2 &2

dl &1

a2 &2

(17)

satisfy equation (16), i.e. that

or its equivalent

ai C\

«2 C'2

ai bi

a2 &2

L|a2 62I J

Cl bi Ol Cl ai 61- as -63 + C3
C2 62 (H C2 aa &2

=

= 0.

* Those interested in this problem will find a complete discussion in

BocHEB, Higher Algebra, Chapter IV.
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Case 2. An infinite number of solutions. In this caae

ttl _ (Z2 __ Cli

bi 62 bs

and hence, by the corollary of theorem 5, the above determinant must equal

zero. Therefore, in order that three linear equations in two unknowns

have a common solution, it is necessary that the determinant of the coeffi-

cients of the unknowns and the known terms vanish.

Extending this result to n linear equations in n — 1 unknowns, we
have a necessary condition that n linear equations in n — 1 unknowns he

consistent is that the determinant formed from the coefficients of the un-

knowns and the knoion terms must vanish.

It must be clearly understood that the vanishing of the above determi-

nant is only a necessary and not a suificient condition that the equations

be consistent. For example, the system

2x+ y-l = 0,

2x+ y + 5 = 0,

4a; + 2y + 3 = 0,

gives
2 1-1

A= 2 1 6 =0,
4 2 3

but the equations are inconsistent, for any pair are inconsistent.

EXERCISES

Solve the following systems of equations by means of determinants ;

1.

8. <

2x — y — z = 0j

Zx + y+z = 6,

2x-Sy — v=—2,
2x-hSv — d.

— a; + ?/ + 2 = 2m,

x-y + z=2n,

x-\-y — z-2p.

32/ -4x- 20 + 10 =-21,

a; + 72/ + 2-w> = 13,

l/-2a;-30 + 2io = 14,

.3a; + 5^ - 50 +3wj = 11.

4.

x + y + w = Q,

x + y + = 7,

y + + w = 8,

X + + to = 9.

05 + 2^-0 + 3to=- 10,

x + 3y — 20 — 4to = l,

2x-y-30 + 5to = 3,

3x-.y-0-2io = 18.
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Determine whether the following systems of equations are consistent

:

6. |a; + y-2 = 0, 7. ISx-2y+ 'l=0. 8. lx-y-\-7=0,

[4x+y-2= 0. [3x+ y-2 = 0.3a;-6y-2=0.

9. Find k so that the following equations are consistent

:

2x + y-3 = 0,

3ic-2/ = 2,

x-^y + k = 0.

/
MISCELLANEOUS EXERf^ISES

1. Prove that the equation of the oifcle that passes through the points

(aJi,yi), (2:2,2/2), (353,2/3) is

(x2 + y2) X y \

(ici^ + yi^) a:i y-i 1

(X2^ + y'J^) ^2 2/2 1

(a;82 + 2/3^) a;3 2/3 1

= 0.

2. Prove that ax^ +
two linear functions if

+ 2 hxy + 2fx + 2gy + c is the product of

a h g

h b f

9 f c

3. Prove that a necessary condition that the three lines aix 4- biy + Ci

0, a2X + 622/ + C2 = 0, asx + 632/ + ca = 0, be concurrent is that

ai 61 Ci

052 62 C2 = 0.

as 63 C3

Is this condition also suflBcient ?

4. Prove that the locus of the equation ax-^by + = is a straight

line.

[Hint : Let {xi ,2/1), (icz , 2/2) be any two fixed points on the locus and

{x, y) any other point on the locus. Then we have axi + 6yi + c = 0,

ax2 + by2 -h c = 0, ax + by -\- c = 0. Since these equations are consistent,

the determinant of the coefficient is zero.]



PART V. FUNCTIONS OF TWO VARIABLES

SOLID ANALYTIC GEOMETRY

CHAPTER XXI

LINEAR FUNCTIONS

THE PLANE AND STRAIGHT LINE

323. Introduction. Thus far the only functions which we

have represented geometrically are those of the form y = f{x),

i.e. functions of a single independent variable x. Such func-

tions, in general, were seen to represent a curve in the (a;, y)

plane. We shall now study functions of the form z = f(x, y),

i.e. functions of two independent variables x and y. In order

to carry out this investigation it is necessary to set up a coordi-

nate system in three dimensions.

324. Orthogonal Projections. The orthogonal projection of

a point P upon a plane a (Fig. 255) is the foot P' of the per-

pendicular drawn from P to a. The ortho-

gonal projection of a segment PQ upon a is

the segment PQ' joining the projections of

P and Q upon a.

The orthogonal projection of a point P
upon a line I is the foot P of the perpen-

dicular drawn from P to I. The orthogonal projection of a

segment PQ upon the line I is the segment PQ' joining the

projections of P and Q upon I.

494



XXI, § 325]

^

LINEAR FUNCTIONS 495

325. Rectangular Coordinates in Space. Consider three

mutually perpendicular planes intersecting in the lines X'X,

F' F, ZiZ. These lines are themselves mutually perpendicular.

The three planes are known as the coordinate planes and their

three lines of intersection as the coordinate axes. The planes

are known as the xy-plane, yz-plane, xz-plane, and the axes

as the X-axis, y-axis, z-axis. The point which is common

to the three planes and also to the three axes, is called the

origin. The positive directions of these axes are usually taken

as indicated by the arrows in Fig. 256.

>-x

Fig. 266 Fig. 257

Let P be any point in space, and let us consider the seg-

ment OP. The numbers representing the projections of

OP on the three axes we call the coordinates of P and

denote them by x, y, and z. In Fig. 257, x = OA, y = OB,

Z=:00.

Conversely, any three real numbers x, y, z may be con-

sidered as the coordinates of a point P. Why? If i^ is the

foot of the perpendicular dropped from P on the xy-igleme, and

A is the foot of the perpendicular dropped from Mon the a>axis,

the coordinates of P are x — OA, y = AM, z = MP.

The eight portions of space separated by the coordinate

planes are called octants. From the preceding definitions it
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follows that the signs of the coordinates of a point P in any

octant are as follows :

(a) X is positive or negative according as P lies to the right

or left of the 2/2!-plane

;

(6) y is positive or negative according as P lies in front or

back of the a;2;-plane

;

(c) z is positive or negative according as P lies above or

below the ajy-plane.

EXERCISES

1. What are the coordinates of the origin ?

2. What is the z coordinate of any point in the a;y-plane ?

3. What are the x and y coordinates of any point on the 2:-axis ?

4. What is the locus of points for which x = ? for which y = ?

for which ^ = ?

5. What is the locus of points for which x = and ?/ = ?

6. What is the locus of points for which y =0 and 2 = 0?

7. What is the locus of points for which s = and x = ?

8. What is the locus of points for which a; = 2 and y = 2 ?

9. If P(x, ?/, z) is any point in space, find

(a) its distance from the xy-plane
; (d) its distance from the x-axis

;

(h) its distance from the ?/2;-plane
;

(e) its distance from the y-axis
;

(c) its distance from the x^-plane
; (/) its distance from the ^-axis.

10. Describe the positions of each of the following points : (2, — 8, 3) ;

(-2, 3, -5); (3, 3, -3); (-4, -7, -9).

11. Plot the following points : (2, 1, 3) ; (4, ~ 1, - 2) ; (0, 0, - 3)

;

(3,1,1); (-1,-1,-1); (1,0,1); (-1,2,-1); (1,-1,0);
(4, - 1, - 1).

12. Find the distance from the origin to the point P (a;, y, z).

13. A point P moves so that its distance from the origin is always

equal to 4. Find the equation of the locus of P.

14. Show that the points (a;, j/, z^ and (— x, y, z) are symmetric with

respect to the j/s-plane.

15. A rectangular parallelepiped has three of its faces in the coordi-

nate planes. Find the coordinates of its vertices, assuming that the di-

mensions of the parallelepiped are a, 6, c.
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Fig. 258

326. Directed Segments. We shall define the angle be-

tween two directed lines I and m which do not meet, to be the

angle between two similarly directed

lines I' and m' which do meet (Fig. 258).

Theorem I. If AB is a directed seg-

ment on a line I, which makes an angle 6

with the directed line V, then

(1) Proiv AB==AB cos Q.

Proof : Through A' (Fig. 259) draw ?i parallel to I and let

Bi be the projection of B on l^. Then, by definition, the angle

between I and V is the same as the angle

between l^ and V. It follows from § 135

*^^*
A^B'==A'B, cose,

or A'B' = AB cos By

since A'Bi = AB.

Theorem II. The projection on a directed line s of a broken

line made up of the segments A1A2, AzA^, ^3^4? •••, A^^iA^, is

equal to the projection on s of the segment AiA^.

The proof of this theorem is left as an exercise. See § 136.

Corollary. If Pi (%, yi, z^) and P^ {X2, y%y Zz) are any two

points, then , ^ .

'X2 - xi = Proja, P1P2,

(2) U2 - yi = Projy P1P2,

^2 - zi = Proj« P1P2.

EXERCISES

1. Find the projections upon the coordinate axes of the sides of the

polygon ABCDEF whose vertices are A (0, 0, 0), ^ (1, - 6, 4), C (- 2,

4, - 1), D (3, - 1, 2), E{2, 1, 4), F (1, 1, 1).

2. The projections of the segment MP upon the coordinate axes are

4, 3, - 1 respectively. If Jlf is (2, - 1, 3), find the coordinates of P.

2k
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327. Direction Cosines of a Line. Let I be any directed

line and V a line through the origin having the same direction.

If V makes angles a, y8, and y with the x, y, and z axes respec-

tively, then, by definition, I makes the same angles with these

axes. These angles are known as the direction angles of the

line Z, while their cosines are called the direction cosines of I.

Keversing the direction of a line changes the signs of the direc-

tion cosines of the line. For reversing the direction of a line

changes a, /?, y into rr — a, ir — (3, tt — y, respectively ; and by

§122 cos(7r-^) = -cosa

Theorem. The sum of the squares of the direction cosines of

a line is equal to unity.

)»X

Fig. 260

Proof. Let P(x, y, z) be any point on V (Fig. 260). Then,

we have
{x = OP cos a,

(3) 2/ = OP cos ^,

[2; = OF cos y.

Therefore,

x^-j-y'' + z^= OP^[cos2 a + cos^ jS + cos^ y].

Since ips -f 2/2 -f
gz = Op\* it follows that

(4) cos2 a +C0S2 p 4- cos2 7 = 1.

* or' = x2+ y2 and OP^ = 22 -I- oS^^ = ^2 -I-
xa + ya.
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Any three numbers /, m, n, (not all zero) are proportional to

the direction cosines of some line ; for, P{1, m, n) is a point

and the direction cosines of OP are

I
cos a =

(5) cos (3

cos y =
±VZ* + m2+n2

The direction cosines of OP are evidently proportional to Z,

m, n, and they may be found by dividing I, m, and n, respec-

tively, by ± V/2 + m^ 4- 7i\

328. The Distance between Pi(xi, i^i, zj and ^2(^2, i/2, ^2).

Let the direction angles of the segment P1P2 be a, (3, y. Pro-

jecting P1P2 upon the axes, we have, from the corollary of § 326,

P1P2 cos a = .T2 — Xi, P1P2 cos /? == 2/2 — 2/ij AA cos y = 22 — 2!l.

Squaring and adding we have, by the theorem of § 327,

i\P2"=(x2-x,y^(y2-yiy-h(z2-z,y.

Therefore,

(6) P,P2 = V(X2 - X,y + (1/2 - Vlf -h (^2 - ^l)^.

EXERCISES

1. Find the length and the direction cosines of the segment P1P2, when

(a) Pi is (2, 3, 4) and P2 is (- 1, 0, 5) ;

(&) Pi is (- 1, 2, - 7), and P2 is (4, 1, 4) ;

(c) Pi is (4, 7, 1), and P2 is (1, - 2, - 7).

2. Prove that the triangle whose vertices are A{m^ w, p), 5(n, p, m),

C ( jo, m, n) is equilateral.

3. Find the direction cosines of a line which are proportional to 4, 7, 1.

4. Find the length of a line-segment whose projections on the co-

ordinate axes are 4, 7, 2.
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329. The Angle between Two Directed Lines. If aj, p^, y^

and otg) ft, 72 ^^^ the direction angles of two directed lines

li and ^2 the angle 6 between them may be determined as

follows.

Draw the lines I'l and I'z through the origin, parallel to the

given lines (Fig. 261). Then the angle between l\ and V2 is 0.

^-x

If P(x, y, z) is any point on l\, then, by Theorem II of § 326,

we have
^^^.^^^ ^^ ^ p^^.^^^ OMNF,

^'^' OP cos e = OM cos a2 + MN cos ft + iVP cos y^.

But,

OiJf= OP cos «!, il[fiV= OP cos ft, NP = OP cos yj.

Therefore,

(7) cos e = COS tti cos a2 H- cos Pi cos P2 + cos 71 cos 72-

We shall assume that 6 is the smallest positive angle satis-

fying equation (7).

330. Parallel and Perpendicular Lines. If two lines are

parallel and extend in the same direction, they are parallel to

and agree in .direction with the same line through the origin.

Therefore, if ai, ^1, yi and ag) ft? 72 a-^e the direction angles

of the two lines, a^ = a^, /3i = ft, 71 = 72 ; and we may write

(8) cos ai = cos a2, cos pi = cos p2, cos 71 = cos 72-

Conversely, if relations (8) are satisfied, the given lines are

parallel and extend in the same direction. Why ?
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If the two lines are parallel but extend in opposite directions,

we have ai = ir — 03, ft^ tt — ft? yi = 'r — 72? and therefore,

(9) cosai=-cosa2, cos Pi=-cos pg, cos 71 =- cos 72-

Conversely, if relations (9) are satisfied, the given lines are

parallel and extend in opposite directions. Why ?

If the two lines are perpendicular^ it follows from formula

(7) that,

(10) cos tti cos ttg + COS pi COS p2 + COS 7i cos 72 = 0.

Conversely, if (10) is true, the lines will be perpendicular.

If /, m, n and l\ m', n' are proportional to the direction

cosines of two lines, the lines will be perpendicular if, and

only if,

(11) W + mm' + nn' = 0.

They will be parallel if, and only if, the numbers I, m, n are

proportional to V, m', n'. If any of the numbers I, m, n are

zero, the corresponding numbers of the set Z', m', n' must, of

course, also be zero.

331. Point of Division. Let Pi(xi, 2/i> ^i), Afe Vii ^2) be

two given points and P{x, y, z) any point on the segment P1P2

P P
such that ^-^ = X. If a, jS, y are the direction angles of this

PPi
segment, it follows from § 326 that

PiP cos a = x — aji, PP2 cos a= X2 — x.

Therefore,

PiP cos a __ X — Xi __,

PP2 cos a X2^ X
or

Xi +Xx2
(12) x =

1-hX
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Similarly, we have

It should be noticed that A is positive if P lies within the

segment PiPo, and negative if it lies without. By varying A,

the coordinates of any point (=^ P2) on the line P1P2 may be

obtained.

For the mid-point of P1P2 we have A = 1 and, hence, the

coordinates of the mid-point of P1P2 are

(14) ^^ a;i-f a;2

^

y=yi±Jh^ ^^ ^1 + 22
^

i^ J 2

EXERCISES

1. Find the cosine of the angle between the two lines whose direction

cosines are proportional to 2, 3, 1 and — 1, 4, 6.

2. Find the coordinates of the points of trisection of the segment

Pi(4, -1,3), P2(-4, 7,3).

3. Prove that the medians of the triangle whose vertices are (1, 2, 3),

(3, 2, 1), (2, 1, 3) meet in a point.

4. Show that the following points are the vertices of a right triangle :

(1,0,6), (7,3,4), (4, 5, -2).

6. If two of the direction angles of a line are 45° and 60°, find the

third direction angle.

6. Prove that the values a = 30°, /3 = 30° are impossible.

7. The direction cosines of a line are m, 2 m, 3 m. Find wi.

8. Show that {x—\Y+{y-\- 2)2 -f. (5; _ 3)2 = 9 is the equation of a

sphere whose center is at (1, — 2, 3) and whose radius is 3.

9. Express by an equation the fact that the point (x, y, z) is equi-

distant from (2, 1, 3) and (— 1, 4, 3).

10. Show that the points (3, 7, 2), (4, 3, 1), (1, 6, 3), (2, 2, 2) are

the vertices of a parallelogram.

11. Prove by two methods that the points (3, 6, 4), (4, 13, 3),

(2, — 1, 6) are collinear.

12. Show that the points (4, 3,-4), (- 2, 3, 2), (- 2, 9, - 4) are

the vertices of an equilateral triangle.
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13. Find the coordinates of the point which divides the segment PiPa

in the ratio X, given

(a) Pi(2, 6, 8), P2(-l, 3, 6),X = 3;

(6) Pi(- 2, - 5, 8), P2(8, 0, - 2), X = - 2
;

(c) Pi(3, - 7, - 9), P2(2, - 2, - 1), X = 1.

14. Prove that the medians of the triangle Pi(a;i, yi, ^i), P2(X2, y2, ^2)1

Ps(x3, ys» Z3) meet in the point

(
xi + ^2 + a;3 yi + y2 + Vs gi + g2 + ss\

V 3
'

3
'

3 /

15. Prove that the lines joining the mid-points of the opposite edges

of a tetrahedron pass through a common point and are bisected by that

point.

16. Are the following points collinear : (2, 1, 3), (—2, —5, 3),

(1, 5, 7) ?

17. Find the direction cosines of the line that is equally inclined to the

three axes.

18. Prove that the lines joining successively the middle points of the

sides of any quadrilateral form a parallelogram.

19. Find the projection of the segment Pi(l, 2, 3), P2(2, 1, 3) upon

the line that passes through the points P3(— 3, 5, — 5) , P4(8, — 9, 12).

332. Locus of an Equation. We saw that in the plane the

locus of the equation f(x, y) =0 represents, in general, a curve.

In an analogous way the equation f(x, y, z) = 0, in general, re-

presents a surface. For, if we solve for z, we have z = F(x, y)

and from this equation, we see that we can find, corresponding

to every point (x, y) in the xy-^lame, one or more values of z

(real or imaginary). The locus of the real points (x, y, z) is,

in general, a surface, but may be a curve or a point. If there

are no real values for a;, ?/, z which satisfy the equation

f{x, y, z)— 0, we say that the equation has no locus.

The locus of points satisfying the two conditions /(a;, y, 2!)=0

and F{x^ y^z)—^ is, in general, a curve in space, which is the

intersection of the two surfaces represented by these equations.
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333. The Plane. A plane is defined as a surface such that

every point collinear with two points of the surface is itself a

point of the surface.

We shall prove the following propositions :

(a) Every equation of the first degree in x, y, and z represents

a plane.

ih) Every plane is represented by an equation of the first de-

gree in X, y, z.

To prove (a), let Pj (xi, yi, z^), P^ixz, 2/2? ^2) be any two points

on the surface whose equation is Ax -{- By + Cz -\- D = 0.

Then we have

(15) Ax^ + By,+ Cz^ + D^(),

(16) Ax^ 4- By2 -h Cz^ + 2) = 0.

Now let Pi{x^, 2/3J 2:3) be any point on the line PiP^- Then

(if P3 ^fc Pa)) there exists a value of A.(=5fc — 1) such that

"^-"TTT' ^^-TTT' '^"TTX" ^^^^^^

We wish to show that the coordinates of this point also satisfy

the equation Ax -\- By -\- Cz + D == 0. By substitution in this

equation we have

(17) .^-{Ax,-\- By^-\-Cz,-\-D)-^,:^^{Ax^-^By^^-Cz2+D)= 0.

Relation (17) is true, since it follows from (15) and (16) that

each parenthesis vanishes separately. Therefore the surface

defined by the equation Ax -\- By \- Cz -\- D = satisfies the

definition of a plane.

To prove the statement (6), let tt be any plane, and let OH
be the perpendicular from which meets ir in Pj (Fig.

262). The positive direction oi OR will be taken from to

the plane. The direction angles of OR will be called a, )3, y
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and the length OPi will be denoted by p.* Now if P(Xj y, z)

is any point in the plane, we have, by § 326,

>3:

Fig. 262

(18) Projo50P= Tvo]onOM+ ViojonMN-^ ProJo^iVP.

Hence the equation

(19) X cos a 4- y cos p + z cos y = p

is the equation of the plane. Why ? It is seen to be an equa-

tion of the first degree in x, y, z. This form of the equation

is called the normal form.

It follows from the above that, if Ax -^^ By -\- Cz -\- D = i^

the equation of a plane, the direction cosines of a line perpen-

dicular to the plane are proportional to A, B, C.

It is left as an exercise to prove that to reduce Ax -\- By -\-

C^ -f- D = to the normal form we must divide each term by

± V^^ + B^ + C% the sign of the radical being chosen opposite

to that oi D if D =^ 0, the same as that of C ii D = 0, the

same as that of B if C=D = or the same as that of A if

B=C=D = 0*

* If the plane passes throilgh the origin we shall suppose OR is directed

upward, and hence cos 7 >0 since 7 <7r/2. If the plane passes through the

z-axis, then OR lies in the ccy-plane and cos7 = 0; in this case we shall sup-

pose OR so directed that /3<7r/2 and hence cos/3>0. Finally if the plane

coincides with the yz-plane, the positive direction on OR shall be taken as

that on OX



^2

±V^o^

B,

-vc^'

±V^2^ + 02^
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334. The Angle Between Two Planes. The angle between

two planes is defined to be the angle between two normals {i.e.

perpendiculars) to the planes. Let AiX -\- B^y + Cis; + Di =
and A^x + Bay -\- C2Z -{- D2 = ^ be the equations of the two

planes. The direction cosines of their normals are then (§ 333),

cos «! = ^

,
cos 02 =

cos Bi = ^ cos ^2 =

cos yi = ^
; cos y2 =

If ^ is the angle between these normals, then, from § 329,

(20) cos ^ = ±
A,A2±BA + C,C2

V^l^ + B{^ + Ci2 V^z^ + ^2^ + C22

If the planes are perpendicular, cos ^ = 0, and we have

(21) A^A^ + B1B2 4- Ci(72 = 0.

If the planes are parallel their normals are parallel. Hence,

by § 330, their equations in normal form are

X cos a-\-y cosyS-j-g cos y—p, x cos «'+ ?/ cosy8'+2;cos y'=p',

where either cos a = cos a', cos ft
= cos

ft', cos y = cos y', or

cos a = — cos a', cos y8 = — cos ft', cos y = — cos y'. Therefore,

if the two equations be written in the form

A^x + Biy + Ciz + Di = 0, AzX + ^22/ + C^z +A = 0, .

the planes will be parallel if and only if

(22) A2 = kA,, B2 = kB,, Cz^kCi. (k^O)

The equation of any plane parallel to Ax -\- By + Cz -\- D =
can therefore be written in the form Ax -^ By + Cz + D' = 0.
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EXERCISES

1. Sketch the planes whose equations are (a) a; =2, (6) y = 4,

{c) z=-6,(id) 2x + y = l, (e)y-z = 0.

2. How many arbitrary constants are there in the equation of the

plane Ax+By+Cz + D = 0?

3. What is the general equation of a plane that passes through the

origin ?

4. What is the equation of the x^z-plane ? y«-plane ? a;2!-plane ?

5. What are the intercepts on the axes of the planes whose equations

are

(o) 2x-3y-\-z = 12', (6) x-y+z=8; (c) x + y = 0; (d) 6x-7=0?

6. Give three numbers proportional to the direction cosines of the

normal to the plane x-\-2y — z = 9. What are the direction cosines

?

7. What is the normal equation of the plane x — y + z = 9?

8. What is the equation of the system of planes parallel to

2x — y + 2! = 1?

9. What is the equation of the plane that passes through the origin

and is parallel to 2x — Sy + 7z = b?

10. Show that the planes 2x + 4ty — z = 2 and 4a;— y-f40 = 7 are

perpendicular.

11. What is the equation of the plane parallel to2x + 2y-\-z=:9 and

6 units farther from the origin ? 2 units nearer ?

12. What is the distance between the parallel planes 2x-i-2y + z = 9

and 2 X + 2 ?/ + « = 15 ?

13. Find the equation of the plane passing through the points

(a) (1,2,1), (-1,1,0), (0,0,1);

(&) (2,1,3), (1,1,2), (-1,1,4);
(c) (2,2,2), (1,1, -2), (1,-1,0);
(d) (1,1,-1), (1,-1,2), (-2,-2,2).

[ Hint : Use the equation Ax-\-By+Cz + I)=0 and divide by any coeffi-

cient that is not zero.]

14. If D 9^ show that the equation Ax -\- By + Cz }- D = can be

written in the form x/a-{-y/b + z/c = l where a, b, c are the inter-

cepts made by the plane on the x, y, z axes respectively.

15. Show that the four points (0, 0, 3), (4, —3, —9), (2, 1, 2),

(4, 3, 3) are coplanar, i.e. they lie in the same plane.
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16. Find the equation of the plane that passes through the point P
and is parallel to the plane a, when

(a) Pis (2, 1, 8) and ais2£c + 3y- 50 = 5
;

(6) P is (1, 0, 0) and a is 2« + 2/ + = 1

;

(c) Pis (-2, - 1,6) and a is 3a;- 5 2/- 2« = 3.

17. Find the equation of the plane passing through the point P and

perpendicular to the planes a and /3 when

(a) P is (1, 1, 1), a is 2 x — 2/ — = 4, and ^isx-^y + z = l;

(b) Pis (-1, 2, 1), a is a; + 2/ -3« = 3, and /3 is .Sx- 5y + 22 = 1

;

(c) Pis (0, 3, 4), ais2a: + 4y + = 7, and /3is2x-0 + 32! = 2.

18. Find the equation of the plane passing through the points Pi, Pa

and perpendicular to the plane a, when

(a) Pi is (1, 1, 1), P2is (-1,2, 1), and a is 2x- 3y - ;s = 2;

(b) Pi is (0, 0, 1), P2 is (2, 1, 3), and aisx + y — 6;s = 0;

(c) Pi is (2, 1, - 3), P2 is (0, 4, 2), and «is4x — y — ^ = 2.

19. Prove that the distance from the plane Ax + By + Cfe + D = to

the point (XI, 2/1, 01) is + Ax, + By,+ Cz, + D^

VA^ + P2 + C=2

10. Find the distance from the plane a to the point P when

(a) P is (2, 1, 4) and ais2x — iy -} z = 2
;

(6) Pis (2,3, - 1) and a is 2x + 2/ + 260-2 = 0;

(c) P is (0, 0, 3) and ais3x-22/-50 = l.

21. Prove that the equation of the plane which passes through the

point (xi, 2/1, «i) and is parallel to the plane Ax + By -\- Cz -{ D = is

A(x - xi) + B{3j - 2/1) + C{z - zi) = 0.

22. Prove that the equation of a plane which passes through the

point (xi, 2/1, zi) and is perpendicular to the plane Ax+By+Cz+D =
is (P01— C2/i)x+ (Cxi— ^01)2/+ (^2/1 — Bxi)z = 0.

23. Find the cosines of the angles between the following pairs of planes

(a) 2x-32/ + = l, 2x + z=z0;

(6) x-y-0 = 2, 2^-40 = 8;

(c)x + = 3, 4x + 2/+30 = 5.

24. Find the equation of the plane that passes through Pi, P2 and

makes an angle with the plane a, where

(a) Pi is (0, -1, 0), P2 is (0, 0, -1), a is 2/+ 0-7 = 0, and d is 120°;

(6) Pi is (1, 0, 1), P2 is (0, 1, 2), a is X + 2 2/ + 20 = 2, and 6 is 60°.
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25. Find the equation of the locus of a point which moves so that its

distance from the x?/-plane is twice its distance from the a^-axis.

26. Find the equation of the locus of a point whose distance from the

plane x + 2y — 5 = 0is twice its distance from the z-a,xis.

27. A point moves so that its distance from the origin is equal to its

distance from the ^rx-plane. Find the equation of its locus.

335. Simultaneous Linear Equations. In § 70 we saw that

three simultaneous linear equations in three unknowns have

in general a single solution. We shall now show that three

such simultaneous equations have either, (a) a single solu-

tion, or (6) an infinite number of solutions, or (c) no solution.

We shall prove this statement geometrically. Each equa-

tion represents a plane ; the three planes may assume the fol-

lowing relative positions.

Case I. No two of the planes are parallel or coincident.

(a) The three planes may intersect in a single point ; then

there is a single solution of the three simultaneous equations.

(&) The three planes may intersect in a line ; then there is

an infinite number of solutions.

(c) The three planes may intersect so that the three lines of

intersection are parallel ; then there is no solution.

Case II. Two of the planes are parallel but not coincident.

In this case the three planes can have no point in common
and the equations have no solution.

Case III. Two of the planes are coincident.

(a) The third plane may be parallel to the coincident planes,

in which case there is no solution.

(6) The third plane may intersect the coincident planes, in

which case there is an infinite number of solutions.

(c) The third plane may coincide with the coincident planes,

in which case there is an infinite number of solutions.
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336. Pencil of Planes. All the planes that pass through a

given line are said to form a pencil of planes. If

A,x + B,y + Ciz H- A = 0,
(23)^ [A2X + B^y + C^z -fA = 0,

are the equations of any two planes passing through the given

line, then the equation of any other plane of the pencil can be

written in the form

(24) A^x + B^y j^C,z+D,+\ {A^x -h B^ + C<,z + A) = 0,

where A is a constant whose value determines the particular

plane of the pencil. (See § 68.)

337. Bundle of Planes. All the planes that pass through a

common point are said to form a bundle of planes, and this

common point is called the center of the bundle. If

' A^x + Biy+C^z + D^ = 0,

(25) A2X + A2/ + C2Z + A = 0,

A^x + B,y^C^z+ A-0,
are the equations of any three planes passing through the

center and not belonging to the same pencil, then the equation

of any other plane of the bundle is

(26) {A^x+ Biy+ C^z+ D^) + X^A^x + B^y + C^z + A)
+ X2{Ax 4- B,y + C> + A) = 0,

where Ai, A2 are constants whose values determine the position

of the particular plane of the bundle. Why ?

EXERCISES

1. Find the equation of the plane that passes through the Intersection

of the planes a and /3 and the point P, when

(a) ais2x + 3y--2; = l, /3isa; + 2/-2« = 2, and P is (1, 0, 2) j

(6) aisx + y + 2^ = 0, /3is4a;-2?/-2;= l, and Pis (2, 1,1);

(c) a is 3 a: - 2 y - 2r = 2, /3 is X - 2/ + « = 3, and P is (1, 0, 1).
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2. Show that the planes whose equations are 3a;--5y + 2 = 0, 6x +
y = 2 2 + 13, lly — 2z = 17, belong to the same pencil.

3. What is the equation of the plane of the pencil whose axis is

2x — y + 52! + 2 = 0, 4x — Sy-\-z = l, which is perpendicular to the

plane x = 0? y = 0? z = 0?

4. Find the equation of the plane that passes through the intersection

of the planes 2x + y — z -j- 1, Sx— y — z = 2 and is perpendicular to the

plane x -^ y — z = 1.

5. Find the equation of the plane that passes through the point of in-

tersection of the planes a, /3, y and the points Pi, P2, when

(a) ais2x + y = 1, fi is x — z = 1, yis2x — y + 2z = 3,

Pi is (1, 0, 1), and P2 is (2, 1, 1) ;

(b) aisSx- y -z = S, ^isx — y-\-2z = l, VisSx — 2y + 2! = 3,

Pi is (2, 1, 3), and P2 is (0, 8, 0).

338. Equations of a Straight Line, (a) The two simul-

taneous equations

(27)
^ ^ ^ A2X + B^y-h C2Z -}-A = 0,

represent a line, the intersection of the two planes, provided

the two planes are not parallel.

(6) A given point and a given direction determine a line.

Let the given point be Pi{xi, y-^, z^ and a, /8, y the given direc-

tion angles. If P (x, y, z) is any other point on the line at a

distance d from Pj, then by § 326, dcos a=x—Xijd cos /8=2/— 2/ij

d cos y = z — Zi. Hence we may write

(28)
x-x^ ^ y-yi ^ z- z^

^

cos a cos p cos y
*

which are the equations of the required straight line. These

equations are known as the symmetric equations of a straight

line. In these equations cos a, cos /8, cos y can evidently be

replaced by ar.y three numbers proportional to them.
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(c) Two distinct points Pi(xi,yi, Zi), P^ixz, 2/2? %) determine a

line. Any line through, the point Pj is of the form

cos a cos ^ cos y

Now the direction cosines of PiA are proportional to a^ — ajj,

?/2 — J/i> 2^2 — 2:1. (§ 328.) Therefore the equations of the line

through the points Pi, P.^ are

(29)
x-Xi ^ y -Vi ^ z-Zi
X2 -Xi Vi- Vi ^2 - 2i

We should note that in every case two equations are necessary

to represent a line.

Example 1. Reduce to the symmetric form the equations of the straight

line, 2a: + y--0 = 3, x — y+2z-=:1. Eliminating y between the two

equations we have 3 a; + = 10. Similarly, eliminating z we have

6 aj -f y = 13. Solving these two equations for x and equating the values

found, we have
a;_ y — 13 _ g-10
1~ -6 ~ -3

*

The line is seen to pass through the point (0, 13, 10) and to have direction

cosines proportional to 1, -- 5, — 3.

Example 2. Find the equations of the line that passes through the

point (4, —1, 3) and is perpendicular to the plane 2aj — 3y + 40=7.
The required line is parallel to any line perpendicular to the plane and hence

its direction cosines are proportional to 2, —3, 4 (§333). Therefore,

the equation of the required line is

a;~4 _ y + l _ g-3
2 -3 ~ 4 *

EXERCISES

1. Write the equations of the line that passes through the point P
and whose direction cosines are proportional to a, 6, c, where

(a) Pis (1, 2, 1) and a = 2, 6 = - 7, c = 2;

(6) P is (3, 0,-1) and a -2, 6 = 8, c = 9;
(c) P is (3, - 2, -6) and a = 2, 6 = - 9, c = 3.
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2. Find the equations of the lines passing through the following pairs

of points

:

(a) (2, 1, 4), (12, 2, 8) ;
(c) (4, 3, 8), (8, - 2, 1) ;

(6) (3, - 6, - 3), (- 3, 5, 7) ;
(d) (5, 2, 1), (4, 7, -9).

3. Write in symmetric form the equations of the lines

(a) 2x-7j + Sz = S, Sx + by -^z=:9;

(b) Sx-y-z = 8, 4:X + Qy-5z = S;

(c) 5x-\-Sy + z=S, 2x — y + z = 'l.

4. Find the equations of the line that passes through the point P and

is perpendicular to the plane a, when

(a) Pis (2, 1, 7) and ais3ic-?/ + 40 = 9;

(6) P is (4, 2, - 2), and a is 2 a; - 6 2/ + 3 = 3
;

(c) Pis (— 1, 6, 3), and a is 3a; + 4?/ — ;s = 5.

6. Find the equations of the line that passes through the point

(2,— 1, 4) and is parallel to the line

x-_3_ y-7 _ g-7
4 ~ 2 -3

'

6. Find in symmetric form the equations of the line that passes

through the point (2, — 1, 4) and is parallel to the line 2x + y — z = 6,

X — y + Zz = 4:.

7. Find the equation of the plane that passes through the point P and

is perpendicular to the line Z, when

(a) Pis(2,5, 1), andns^ = ^li =^;
o o o

(6) Pis (- 1, 4,7), and I is =^ =1^ =
^-±f.

8. Find the equation of the plane that passes through P(l, 5, 2) and

is perpendicular to the line 3x-y+2 = 8,x — y + 22! = 6.

9 If tf is the angle between the two lines ^ ~ ^^ = V^rJll - lull^

«2 62 C2

10. Prove that the lines - = -^ = -^ , ~ = ^ = - are perpendicular

to each other.
6-2-4463

2h



CHAPTER XXII

QUADRATIC FUNCTIONS. QUADRIC SURFACES

339. The Sphere. If a point P{x, y, z) moves so as to be

always at a constant distance r (r > 0) from a fixed point {h, k, I),

the locus of P is called a sphere. The equation of this locus is

(1) (x-hy+(y-ky-{.(z-iy = r^.

If this equation is expanded, it has the form

(2) x^-\-y^-\-z^-\-Ax-{-By + Cz-^D = 0,

where A, B, C, D are constants depending upon the coordinates

of the center and the length of the radius.

Conversely, an equation of the form (2), in general, repre-

sents a sphere, for it can be written in the form

<" ('+f)'-('-f)'H'+f)'=t'-f-?-^-

which is a sphere if

4 4 4

The center of the sphere is at the point (— A/2, — B/2, — 0/2),

and the radius is

V^V4 + S2/4 + 074 - D.

If the right-hand member of (3) is zero, the locus is the

single point (— Ji/2, —B/2, — (7/2). If the right-hand member

of (3) is less than zero, the equation has no locus. See § 206.

614
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EXERCISES

1. Find the equation of the sphere whose center is at P and whose

radius is r, when

(a) Pis (2, 1, 9),andr = 6;

(6) Pis(l, -8,0), andr = 2;

(c) P is (4, -9,-2), and r = 7.

2. Find the equations of the eight spheres tangent to the three co-

ordinate planes and having a radius of 4,

3. Find the equation of the sphere which has the line joining P(2, 6, 8)

and ^(4, 6, 6) as a diameter.

4. Discuss the locus of each of the following equations,

(a) x2 + ?/2 + ^2 _ 2 X - 2 y - 2 2 = 6

.

(ft) a;2 + y2 _}. 2.2 _|. 4 a; __|_ 4 y _ 6 2 + 25 = 0.

(c) a;2 + 2/2 + ^2 _ 2 X - 6y + 8 = 5.

{d) x2 + 2/2 -f ;22 _ 2 2 - 4 y + 5 = 0.

5. Find the locus of points the ratio of whose distances from (0, 1, 0)

and (1, 2, 3) is 5.

6. Show that the equation of the tangent plane to the sphere

x'i + y^^Z^ =^2
at the point (xi, j/i, zi) is

xxi -f yyi + zzi = r2.

[Hint : The tangent plane is perpendicular to the radius.]

7. Find the equation of the sphere passing through the following

four points.

(a) (1,2,3), (3,1,0), (2,1,0), (3,4, 1).

(6) (2, 1, 0), (- 1, - 1, 0), (3, 0, 2), (0, 0,0).

[Hint : Use the equation x^ -h y^ -^ z'^ + Ax -]- By -\- Cz + D = and

determine the values of A, J5, O, Z>.]

340. Cylinders. The surface generated by a straight line

which moves parallel to a given line and always intersects a

given fixed curve, is called a cylindrical surface or a cylinder.

The generating line in any of its positions is called an element

of the cylinder.

Any algebraic equation in two cartesian coordinates repre-

sents in space a cylinder whose elements are parallel to the

axis of the third variable.
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For example, the equation

a;2 + y2 =4

represents in the ccy-plane a circle (Fig. 263). But, the equation is satis-

fied by the coordinates of any point P which lies on a line parallel to the

«r

2;-axi8 and passes through a point Q on the circle. Moreover, if QP moves

parallel to the 2-axis and continues to cut the circle the coordinates of P
still satisfy the equation x^ + y2 _ 4, The cylinder traced by the line

QP is the locus of the equation x^ + 2^2 _ 4,

It is clear that if a cylinder has its axis parallel to a coordinate axis, a

section made by a plane perpendicular to that axis is a curve parallel

and equal to the directing curve on the coordinate plane. Thus the

section cut by the plane z = S from the hyperbolic cylinder whose equa-

tion is

x^-y^ = 4,

is a hyperbola equal and parallel to the hyperbola in the xy-plane whose

equation is x^ — y^ = 4.

341. The Projecting Cylinders of a Curve. A cylinder

whose elements are parallel to one of the coordinate axes and

always intersect a fixed curve in space, is called a projecting

cylinder of the curve. The equations of the projecting cylin-

ders may be found by eliminating in turn each of the variables

X, y, z, from the equations of the curve. Why ? The curve

may often be constructed conveniently by means of two dis-

tinct projecting cylinders.
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EXERCISES

1. Describe the locus of each of the following equations,

(a) aj = 2. (A) yz - 6.

(6) 2x2 + y2 = 8. (4) ^_^ = o.

^^^ ^^ ^' (m) y2==3c2.

(fir) 2/2 - ig2 = 1.

2. Prove that x^ + 2xy +y^ = 1 — z^ is the equation of a cylinder,

the direction cosines of any element being proportional to (1, 1, 0).

3. Find the equations of the projecting cylinders of each of the following

curves. Construct the curves as the intersection of two of these cylinders.

(a) x2 + y2 + 2,2 = 4^ a;2 + y2 _ 5,2 = 0.

(6) a; = 1, x2 + y2 4. ;5,2 = 4.

{c) x^ - y^ = ^ Zj x^ + y^ = z.

{d) y'2 = x + z,z = x + yK

(e) 02 = xy, x2 = yz.

342. Symmetry, Intercepts, Traces, Sections. If a given

equation is unaffected by replacing x hj — x throughout, the

locus is symmetric with respect to the yz-^lane.

If a given equation is unaffected by replacing y by — y, the

locus is symmetric with respect to the a;2;-plane.

If a given equation is unaffected by replacing zhj — z, the

locus is symmetric with respect to the xy-i^\sine.

What would be a test for symmetry with respect to the a;-axis ? the

t/-axis ? the «-axis ? the origin ?

The segments measured from the origin to where a surface

cuts the axes are called the intercepts of the surface on the

axes. To find the intercepts place two of the variables equal

to zero and solve the resulting equation for the third variable.

Why?
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The sections of a surface made by the coordinate planes are

called the traces of the surface (Fig. 264). To find the equa-

tions of the traces put each variable in

turn in the given equation equal :to zero.

Why?
The equations f(x, y, z)—0 and x = k,

a constant, are together the equations of

the curve of intersection of the surface

and a plane parallel to the i/^^-plane.

Similarly sections parallel to the xy- and 2/z-planes may be

found. If A: = 0, the sections are the traces.

*-x

343. The Ellipsoid. The surface represented by the equation

w 1' 4.1^' 4.^=1
a-i b^ c2

is called a,ii- ellipsoid. It is symmetric

with respect to the three coordinate

planes, the three axes, and the origin.

The intercepts on the x-, y-, s-axes are

respectively ± a, ±b, ± c (Fig. 266).*

The traces on the three coordinate planes

are, respectively.

x^_^y
&2

1, . = 0; ^' + ?-!=l,
2/ 0;

Fig. 265

1, X = 0.

The sections of the ellipsoid by the plane a; = A; is an ellipse

whose equations are

('-'f<'-S)
= 1, xz=k.

bVl

* The figure exhibits only that part of the surface lying in one octant,—

that in which x, y, z are all positive.
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The semi-axes of this ellipse are 6VI — W-ja^, cVT-^F/o^.

As
I

A;
I

increases from to a, the axes of this elliptical section

decrease. When
|
A;

|
= a the ellipse reduces to a point, and

when
I

A;
I

> a the sections are imaginary. The surface lies

therefore entirely between the planes x — a^ x = — a. Sim-

ilarly it may be shown that the surface is also bounded by the

planes y = b, y — — b ; z = c, z = — r.

LI

'

n --^

Fig. 26()

A general idea of the appearance of an ellipsoid is given

by Fig. 266, which represents a plaster model of this sur-

face.

Special Cases. In general the semi-axes a, b, c are unequal,

but it may happen that two or three of them are equal. If

the three are equal, i.e. a = b = c, the surface is a sphere. If

two are equal, for example, if & = c, the ellipsoid is called an

ellipsoid of revolution, for it can be generated by revolving the

ellipse x'^/a^ -\- y^/b^ = 1, j; = about the avaxis.
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344. Surfaces of Revolution. The surface generated by

revolving a plane curve about a line in its plane is called a

surface of revolution. The equation of the surface is readily

found when the axis of revolution, i.e. the line about which

the curve is revolved, is one of the coordinate axes.

Let y=f{x) be the equation of the

plane curve in the a;?/-plane and the

ic-axis the axis of revolution. As the

curve 2/= /(a?) revolves about the a;-axis,

any point P on this curve describes a

circle, whose center is on the x-axis and

whose radius is equal to f{x) (Fig. 267).

Therefore for any position of P (x, y, z) we have,

which is the equation of the required surface of revolution.

If the ellipse rK'^/a^ -f y^/h^ = 1, ^ = is revolved about the x-axis, the

equation of the surface of revolution is

^^ + ^^ = ita^-^^3, or 1 + 1^,4-^=1.

EXERCISES

1. Sketch and discuss each of the following ellipsoida.

(a) 9 a:2 + 4 2/2 + 16 z-^ = 144.

(6) 25 a;2 + y2
_i_

;j;2 =: loo.

(C) x2 + 8y2 + 2 2;2=:16.

2. Show that the ellipsoid in Ex. 1 (6) is an ellipsoid of revolution.

3. Find the equations of the ellipsoids formed by revolving the follow-

ing ellipses about the axes mentioned.

(a) 9 x2 + 4 y2 = 36, « = o, x-axis.

(6) 9 x2 + 4 y2 = 36, « = 0, 2/-axis.

(c) 9 x2 + «2 = 9, ?/ = 0, ^-axis.

(d) 25 2/2 + 4 22 = 100, X = 0, ?/-axi8.
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4. When an ellipse is revolved about its major axis the ellipsoid gen-

erated is called a prolate spheroid; when it is revolved about its minor

axis, an oblate spheroid. Which of the ellipsoids in Ex. 3 are oblate and
which are prolate ?

5. Describe the locus of each of the following equations.

(a) ^ + ^ + 5_ = o
^ ^ a^ b^ c''

^ ^ a^ b^ d^

345. The Hyperboloid of One Sheet. The surface.repre-

sented by the equation

(6) Qi "^
62 ^2

is called a hyperboloid of one sheet

respect to each of the coordinate

planes, each of the coordinate

axes, and the origin. The inter-

cepts on the X- and ?/-axes are

± a and ± b respectively, while

the surface does not meet the

z-axis (Fig. 268). The traces on

the coordinate planes are, respec-

tively,

It is symmetric with

Fig. 268

--- = 1, 2/=0.
a2 c2 '

^

Of these, the trace on the xy-^lsme is an ellipse, while the other

two are hyperbolas.

The section of the surface made by the plane z = k, is an

ellipse whose equations are

•t'?]''t'n

= 1, z = A;.
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This ellipse is real for all real values of k. The semi-axes are

the smallest when A; = and increase without limit as
|
A:

|

increases.

The plane y = X,
|
A.

|
^ 6, intersects the surface in the

hyperbola

= 1, 2/ = X.

•['-^] I'-s]
If

I A I < 6 the transverse axis is parallel to the ic-axis, while

if
I A I > 6 it is parallel to the 2;-axis.

Fig. 209

A good idea of the appearance of this surface is given by

Fig. 269, which represents a plaster model of a portion of the

surface.

If A, = 6, the section consists of the two straight lines

a c a c
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If A. = — 6, the section is the two lines

a c a c

These four straight lines lie entirely upon the surface.

Similar considerations apply to the sections made by planes

parallel to the yz-^lsme.

. The form of one eighth of the surface is given in Fig. 268.

The broken lines in that figure indicate three sections by the

three planes

y = \, for
I

A,
I

< 6, =b, and > b.

Some of the straight lines on the surface are shown on the

model represented by Fig. 269.

If a = 6 the hyperboloid becomes a surface of revolution

obtained by revolving the hyperbola x^/a^ — z^/c^ = 1, y =zO

about its conjugate axis.

EXERCISES

1. Sketch and discuss each of the following surfaces.

(a) x2+4 2/2_g2=16. (ft) 9x^-\-y^-z^=Se. (c) ix^+16y^-z-^=Qi.

2. Are any of the surfaces in Ex. 1 surfaces of revolution ?

3. Show that

(x-2y (y-l)2 (z-Sr ^^
9 4 1

is the equation of a hyperboloid of one sheet whose center is at the point

(2, 1, 3).

4. Show that ^-t: + ?l = i and -^ + l^+£!=3l are equations of
a'^ b'^ c^ a'^ 52 ^2

hyperboloids of one sheet.

5. Find the equation of the hyperboloid of revolution formed by
revolving each of the following hyperbolas about the axis specified.

(a) 9 a;2 - 4 1/2 = 36, z = 0, transverse axis.

(6) 9 x2 - 4 2/2 = 36, ;j;
_ 0, conjugate axis.

(c) 4 1/2 _ 2;2 _. 16, a; = 0, transverse axis.

(d) 4 1/2. _ z2 = 16, X = 0, conjugate axis.
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346. Hyperboloid of Two Sheets. The surface represented

by the equation

(6)
fl2 e,2

22

C2

==1

is called a hyperboloid of two sheets. It is symmetric with

^x

Fig. 270

respect to each of the coordinate planes, the coordinate axes

and the origin. The intercepts on the a?-axis are ± a, while

Fig. 271

the surface does not meet the y- or z-axis (Fig. 270). The

traces on the coordinate planes are, respectively.

a;2 y'

There is no trace on the 2/2?-plane.
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The plane a; = A; intersects the surface in the curve whose

equations, iik^± a, are

11-'] {5-]
1, x = k.

If
I

A:
I
> a this curve is an ellipse ; if \k\ = a it is a point.

If
1
A:

I
< a the equations have no locus. All sections parallel

to the xy- and a;2;-planes are hyperbolas.

A good idea of the appearance of this surface is given by Fig.

271, which represents a model of a portion of the surface.

If 6 = c the hyperboloid becomes a surface of revolution

formed by revolving the hyperbola

X-

about its transverse axis.

EXERCISES

1. Construct and discuss each of the following surfaces,

(a) 4 a;2 ~ 9 ^2 _ 36 ^2 = 144.

(6) x2 - y2 _ z2 - 1.

(c) 9x2-4«/2-02 = 36.

2. Are any»of the surfaces in Ex. 1 surfaces of revolution ?

3. Show that _ ±- + ^ - 5- = 1 and _ ±- _ ^^ + ^ = 1 are equations
a2 &2 c2 02 62 ^c2

^

of hyperboloids of two sheets.

4. Find the equation of the hyperboloid of revolution formed by

revolving each of the following hyperbolas about the axis specified.

(a) ^ - ^ = 1, = 0, conjugate axis.
4 9

(6) 4:y^ - z^=4, x = 0, transverse axis.

(c) 2 x2 — 4 02 = 1^ y = 0, conjugate axis.
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347. The Elliptic Paraboloid. The surface represented by

the equation

is called an elliptic paraboloid. It is symmetric with respect

to the xz- and 2/2j-planes, and the 2-axis. The

intercepts on all three axes are zero. The trace

on the a;y-plane is a point, namely the origin

;

the traces on the xz- and yz-iplsmes are, respec-

tively, the parabolas x^ = a^z, y = 0; y^ = b^z,

x = (Fig. 272).

Sections made by the planes z = k (k > 0)

are ellipses. Why ? Those made by the planes x = k and

y = kj respectively, are parabolas. Why ?

Fig. 272

FiQ. 273

Figure 273 represents a model of a portion of the surface.

If a = 6, the surface is a figure of revolution formed by re-

volving the parabola x^ = a% y = 0, about the 2;-axis.
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348. The Hyperbolic Paraboloid. The surface represented

by the equation

x2 y2

(8)
fe2

is called a hyperbolic paraboloid. (See Fig. 274.) It is sym-

metric with respect to the xz- and yz-iplsmes. All three inter-

cepts are zero. The trace on the xy-iplsme is the pair of lines

^
. ?/

0, ^=0;

the traces on the xz- and t/^-planes are, respectively, the

parabolas

x^ = a% y = 0; y^ = - b% a; = 0.

Fig. 274 Fig. 275

Sections parallel to the a;?/-plane are hyperbolas, while those

parallel to the xz- and 2/2!-planes are parabolas. The form of

the surface is shown in Fig. ?75.
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EXERCISES

1. Sketch and discuss each of the following surfaces,

(a) a;2 + 4y2 = 36 z. (c) y'^ - z^ = x.

(6) 2X2 + ;32 = 16y. (d) 2X2 - 02 = _ y.

2. Sketch the surface «2-2a; + t^-4y = «~5.

349. The Cone. The surface represented by the equation

is called a cone. It is symmetric with respect to the three

coordinate planes, the three axes, and the origin. All three

intercepts are zero. The trace on the xy-

plane is a point, namely the origin. The

traces on the x%- and 2/2!-planes are respec-

tively the pairs of lines ca; ± az = 0, 2/ = ;

c?/ ± 6^ = 0, a; = (Fig. 276). Sections paral-

lel to the a;?/-plane are ellipses, while those

parallel to the xz- and 2/2!-planea are hyper-

bolas. If any point P (aji, ?/i, z^) on the sur-

face is connected with the origin, then the line OP lies entirely

on the surface. For, (Xaji, Xa:2, X%) are the coordinates of any

point on this line (see § 331), and they arc seen to satisfy the

given equation (9), for all values of X.

If a = 6 the cone is a cone of revolution.

EXERCISES

1. Construct and discuss each of the following surfaces.

(a) x2 + t/2-;22 = o. (6)9x2 + 4 2/2-3602-0. (c) x2-y2 4.4;s2 = o.

2. A point P moves so as to be equidistant from a plane and a line

perpendicular to the plane. Find the equation of the locus of P.

3. A point P moves so that the sum of its distances from the three

coordinate planes is equal to its distance from the origin. Find the

equation of the locus of P.
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350. Summary. The surfaces discussed are here enumer-

ated for reference.

Ellipsoid :

1 + !i+ -2=l- (Figs. 265, 266, § 343)
w- 0^ c^

HyPERBOLOID OF ONE SHEET:

-! + S - ^ = ^- (^^^«- 2^^' 269, § 345)
0} ©2 Qi

Hyperboloid of two sheets :

a;2 ?/2

1. (Figs. 270, 271, § 346)

Elliptic Paraboloid :

a2 62

Hyperbolic Paraboloid :

/2

t
-I-
1 = z. (Figs. 272, 273, § 347)

^-|^ = ^. (Figs. 274, 275, § 348)
a

Quadric Cone:

S+S-|= 0- (Kg. 276, § 349)

QuADRic Cylinders :

a;2

±|-2 = 1, y^ = ^px, (§340)

It is beyond the scope of this book to prove that the general

equation of the second degree in three variables x, y, z, can, in

general, be reduced to one of the above types. Those inter-

ested in this problem will find it fully discussed in any stand-

ard textbook on solid analytic geometry.*

*See, for example, Snyder and Sisam, Analytic Oeometry of Space,

Chapter 7.

2m



530 MATHEMATICAL ANALYSIS [XXII, § 351

y
351. Other Systems of Coordinates.

Numerous systems of coordinates for deter-

*'^ mining the position of a pointP in space have

been devised. The most common of these sys-

•
^^ tems are the rectangular, polar, spherical, and

cylindrical. A brief account of the last three systems follows.

352. Polar Coordinates. Consider the line OP drawn from

the origin to any point P (Fig. 277). Let a, y8, y be the

direction angles of OP, called the radius vector, and let p be the

length of the radius vector. The four quantities a, p, y, p are

called the polar coordinates of P.

Conversely, any four quantities a, fi, y, p, with the restric-

tion that cos2 a 4- cos^ ^ -)- cos^ y = 1, determine a point whose

polar coordinates are a, p, y, p.

Prove that tlie equations of transformation from rectangular to polar

coordinates are.

(10) x = p cos a, y = p cos p, z = p cos 7, p2 = x^^ +y^ -h z^

353. Spherical Coordinates. Any point P in space de-

termines (Fig. 278) the radius vector OP(=p), the angle
<f>

between the radius vector and the 2!-axis, and

the angle 6 between the a>-axis and the pro-

jection of the radius vector on the a;2^-plane.

The quantities p, 0, <f>
are called the spherical

coordinates of the point P. The angle <^ is

known as the colatitude, and the angle 6 as

the longitude.

Conversely, any three quantities p, 6, <f>
determine in space a

point P whose spherical coordinates are p, 6, <i>.

Prove that the equations of transformation from rectangular to spheri-

cal coordinates are,

(11) X = pBind coB(p, y = pain6sm(f>, z — p cos 6.

Fia. 278



XXII, § 354] QUADRIC SURFACES 531

354. Cylindrical Coordinates. Any point P in space de-

termines (Fig. 279) its distance z from the ^p

ajy-plane and the polar coordinates r, 6 of

the point P' which is the projection of P on

the a;?/-plane. These three quantities r, 0, z

are called the cylindrical coordinates of P.

Conversely, any three quantities r, B, z deter-

mine a point whose cylindrical coordinates they are.

Prove that the equations of transformations from rectangular to cylin-

drical coordinates are,

(12) x = rQ.os,e, ?/ = rsin^, z = z.

EXERCISES

1. Express each of the following loci in spherical coordinates.

(a) a;2 -I- ?/2 + z^ = 9. (6) a;2 _|. ^a _ 4^2 _ 0. (c) 4x2 + Qy'2 - z^ - 36.

2. Express each of the following loci in polar coordinates.

(a) ic2 + 2/2 4. 2;2 = 16. (6) X + 1/ = 0. (c) 2 x^ - y'^ - ^^ = 0.

3. Express each of the following loci in cylindrical coordinates,

(a) x^ + y'^ = 9. (6) x^ + y^ + z^ = 9. (c) z'^ - x'^ -\- y^ = 6.

4. Express the distance between two points in polar coordinates.

5. Find the polar, spherical, and cylindrical coordinates of the points

whose rectangular coordinates are (2, 1, 4), (3, 3, 3).

6. What is the locus of points for which

(a) ^ = a constant, = a constant (spherical coordinates) ?

(6) r = a constant, 6 z= sl constant (cylindrical coordinates) ?

7. Find the general equation of a plane in polar coordinates.

8. Find the general equation of a plane in spherical coordinates;

in cylindrical coordinates.

9. Show that in polar co5rdinates a point may be regarded as the

intersection of a sphere and three cones of revolution which have an
element in common.

10. Show that in spherical coordinates a point may be regarded as

the intersection of a sphere, a plane, and a cone of revolution which are

mutually perpendicular.

11. The spherical coordinates of a point are 5, 7r/4, 7r/6; find its

rectangular coordinates
; its polar coordinates; its cylindrical coordinates.
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Squares and Cubes Square Roots and Cube Roots

No. Sqitaee OUBK Square
Root

Cube
Root No. Squabe Cttbe

Square
Root

Cube
Root

1 1 1 1.000 1.000 61 2,601 132,651 7.141 3.708

2 4 8 1.414 1.260 62 2,704 140,608 7.211 3.733

3 9 27 1.732 1.442 63 2,809 148,877 7.280 3.756

4 16 64 2.000 1.587 64 2,916 157,464 7.348 3.780

5 25 125 2.236 1.710 55 3,025 l(i6,375 7.416 3.803

6 36 216 2.449 1.817 56 3,136 175,616 7.483 3.826

7 49 343 2.646 1.913 57 3,249 185,193 7.550 3.849

8 64 512 2.828 2.000 58 3,364 195,112 7.616 3 871

9 81 729 3.000 2.080 59 3,481 205,379 7.681 3.893

10 100 1,000 3.162 2.154 60 3,600 216,000 7.746 3.915

11 121 1,331 3.317 2.224 61 3,721 226,981 7.810 3.936

12 144 1,728 3.464 2.289 62 3,844 238,328 7.874 3.958

13 169 2,197 3.606 2.351 63 3,969 250,047 7.937 3.979

14 196 2,744 3.742 2.410 64 4,096 262,144 8.000 4.000

15 225 3,375 3.873 2.466 65 4,225 274,625 8.062 4.021

16 256 4,096 4.000 2.520 66 4,356 287,496 8.124 4.041

17 289 4,913 4.123 2.571 67 4,489 300,763 8.185 4.062

18 324 5,832 4.243 2.621 68 4,624 314,432 8.246 4.082

19 361 6,859 4.359 2.668 69 4,761 328,509 8.307 4.102

20 400 8,000 4.472 2.714 70 4,900 343,000 8.367 4.121

21 441 9,261 4.583 2.759 71 5,041 357,911 8.426 4.141

22 484 10,648 4.690 2.802 72 5,184 373,248 8.485 4.160

23 529 12,167 4.796 2.844 73 5,329 389,017 8.544 4.179

24 576 13,824 4.899 2.884 74 5,476 405,224 8.602 4.198

25 625 15,625 5.000 2.924 75 5,625 421,875 8.660 4.217

26 676 17,576 5.099 2.962 76 5,776 438,976 8.718 4.236

27 729 19,683 5.196 3.000 77 5,929 456,533 8.775 4.254

28 784 21,952 5.292 3.037 78 6,084 474,552 8.832 4.273

29 841 24,389 5.385 3.072 79 6,241 493,039 8.888 4.291

30 900 27,000 6.477 3.107 80 6,400 512,000 8.944 4.309

31 961 29,791 5.568 3.141 81 6,561 531,441 9.000 4.327

32 1,024 32,768 5.657 3.175 82 6,724 551,368 9.055 4.344

33 1,089 35,937 5.745 3.208 83 6,889 571,787 9.110 4.362

34 1,156 39,304 5.831 3.240 84 7,056 592,704 9.165 4.380

35 1,225 42,875 5.916 3.271 85 7,225 614,125 9.220 4.397

36 1,296 46,656 6.000 3.302 86 7,396 636,056 9.274 4.414

37 1,369 50,653 6.083 3.332 87 7,569 658,503 9.327 4.431

38 1,444 54,872 6.164 3.362 88 7,744 681,472 9.381 4.448
39 1,521 59,319 6.245 3.391 89 7,921 704,969 9.434 4.465
40 1,600 64,000 6.325 3.420 90 8,100 729,000 9.487 4.481

41 1,681 68,921 6.403 3.448 91 8,281 753,571 9.539 4.498
42 1,764 74,088 6.481 3.476 92 8,464 778,688 9.592 4.514
43 1,849 79,507 6.557 3.503 93 8,649 804,357 9.644 4.531

44 1,936 85,184 6.633 3.530 94 8,836 830,584 9.695 4.547
45 2,025 91,125 6.708 3.557 95 9,025 857,375 9.747 4.563
46 2,116 97,336 6.782 3.583 96 9,216 884,736 9.798 4.579
47 2,209 103,823 6.856 3.609 97 9,409 912,673 9.849 4.595
48 2,304 110,592 6.928 3.634 98 9,604 941,192 9.899 4.610
49 2,401 117,649 7.000 3.659 99 9,801 970,299 9.950 4.626
60 2,500 125,000 7.071 3.684 100 10,000 1,000,000 10.000 4.642

For a more complete table, see The Macmillan Tables, pp. 94-111.



Important Constants

Certain Convenient Values for n = 1 to n

535

10

71 1/n Vn V^ n ! l/n\ LOGlO V

1 1.000000 1.00000 1.00000 1 1.0000000 0.000000000

2 0.600000 1.41421 1.25992 2 0.5000000 0.301029996

3 0.333333 1.73205 1.44225 0.1666667 0.477121255

4 0.250000 2.00000 1.58740 24 0.0416667 0.602059991

5 0.200000 2.23607 1.70998 120 0.0083333 0.698970004

6 0.166667 2.44949 1.81712 720 0.0013889 0.778151250

7 0.142857 2.64575 1.91293 5040 0.0001984 0.845098040

8 0.125000 2.82843 2.00000 40320 0.0000248 0.903089987

9 0.111111 3.00000 2.08008 362880 0.0000028 0.954242509

10 0.100000 3.16228 2.15443 3628800 0.0000003 1.000000000

Logarithms of Important Constants

n =>= NUiMBBH A^ALUE OF n LoGio n

TT 3.14159265 0.49714987

l-i-TT 0.31830989 9.50285013

7r2 9.86960440 0.99429975

V^ 1.77245385 0.24857494

e = Napierian Base 2.71828183 0.43429448

M= logio e 0.43429448 9.63778431

l-4-i»/=logelO 2.30258509 0.36221569

180 -J- TT = degrees in 1 radian 57.2957795 1.75812262

TT -M80 = radians in 1° 0.01745329 8.24187738

TT -4- 10800 = radians in 1' 0.0002908882 6.4(i372613

TT -T- 648000 = radians in 1" 0.000004848136811095 4.68557487

sin 1" 0.000004848136811076 4.68557487

tan 1" 0.000004848136811152 4.68557487

centimeters in 1 ft. 30.480 1.4840158

feet in 1 cm. 0.032808 8.5159842

inches in 1 m. 39.37 (exact legal value) 1.5951654

pounds in 1 kg. 2.20462 0.3433340

kilograms in 1 lb. 0.453593 9.65666(50

g (average value) 32.16 ft./sec./sec. 1.5073

= 981 cm./sec./sec. 2.9916690

-weight of 1 cu. ft. of water 62.425 lb. (max. density) 1.7953586

weight of 1 cu. ft. of air 0.0807 lb. (at 32° F.) 8.907

cu. in. in 1 (U. S.) gallon 231 (exact legal value) 2.3636120

ft. lb. per sec. in 1 H. P. 550. (exact legal value) 2.7403627

kg. m. per sec. in 1 H. P. 76.0404 1.8810445

watts in 1 H. P. 745.957 2.8727135
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N I 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9

10 0000 0043 0080 0128 0170 0212 0253 02f)4 0334 0374 4 812 17 21 25 29 33 37

11

12

13

14
15
IG

17
18
19

0414
0702
1139

1461

1701

2041

2304
2553
2788

0453
0328
1173

1492
1790
2068

2330
2577
2810

0492
0864
1206

1523
1818
2095

2355
2.'>01

2833

0531
0899
1239

1553
1847
2122

2380
2625
2856

0569
0934
1271

1584
1875
2148

2405
2648
2878

0607
0969
1303

1614
1903
2175

2430
2672
2900

0645
1004
1335

1644
1931

2201

245".

2695
2923

0682
1038
1367

1673
1959
2227

2480
2718
2015

0719
1072
1399

1703
1987
2253

2504
2742
2967

0755
1106
1430

1732
2014
2279

2529
2765
2989

4 8 11
3 7 10
3 6 10

3 6 9
3 6 8
3 6 8

2 6 7
2 5 7
2 4 7

15 If, 23
14 17 21
13 16 19

12 16 18
11 14 17
11 13 16

10 12 16
9 1214
9 11 13

26 30 34
24 28 31
23 26 29

21 24 27
20 22 25
18 21 24

17 20 22
16 19 21
16 18 20

20

21
22
23

21
25
26

27
28
29

30

31
32
33

34
35
36

37
38
39

3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 2 4 6 8 1113 16 17 19

3222
3424
3617

3802
3979
4150

4314
4472
4624

4771

4914
5051
5185

5315
5441
5563

5682
5798
5911

3213
3444
3636

3820
3997
4166

4330
4487
4639

4786

4928
5065
5198

5328
5453
5575

5694
5809
5922

3263
34G4
3655

3838
4014
4183

4346
4502
4651

4800

4942
5079
5211

5340
5465
5587

5705
5821
5933

3284
3483
3674

3856
4031
4200

4362
4518
4(569

3304
3502
3692

3874
4048
4216

4378
4533
4683

3324
3522
3711

3892
4065
4232

4393
4548
4698

3345
3541
3729

3909
4082
4249

4409
4564
4713

3365
3560
3747

3927
4099
4265

4425
4579
4728

3385
3579
3766

3946
4116
4281

4440
4594
4742

3404
3598
3784

3962
4133
4298

4456
4609
4757

2 4 6
2 4 6
2 4 6

2 4 5
2 4 6
2 3 6

2 3 5
2 3 6
13 4

8 10 12
8 10 12
7 9 11

7 9 11
7 9 10
7 8 10

6 8 9
6 8 9
6 7 9

14 16 18
14 16 17
13 16 17

12 14 16
12 14 16

11 13 16

11 12 14
11 12 14
10 12 13

4814

4955
5092
5224

5353
5478
5599

5717
6832
5944

4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13

4969
5105
5237

5366
5490
5611

5729
5843
6955

4983
5119
5250

5378
5502
6623

5740
5855
5966

4997
5132
6263

5391
5514
6635

6752
C866
6977

5011
6145
5276

6403
5527
6647

6763
5877
5988

6024
6159
6289

5416
5539
6658

5775
6888
5999

5038
5172
6302

6428
6551
6670

6786
5899
6010

1 3 4
1 3 4
13 4

1 2 4
12 4
12 4

12 4
1 2 3
1 2 3

6 7 8
5 7 8
5 7 8

6 6 8
6 6 7
5 6 7

5 6 7

6 6 7
4 6 7

10 11 12
911 12
9 1112

910 11
910 11

8 1011

8 9 11

8 9 10
8 910

40 6021 6031 6042 6053 6064 6075 6085 609(5 6107 6117 12 3 4 6 6 8 9 10

41
42
43

44
45
46

47
48
49

6128
6232
6335

6435
05 32

G628

(5721

6812
6902

6138
6213
6345

6444
6542
6637

6730
6821
6911

6149
6253
6355

6454
6551
664(5

6739
6830
6020

6160
6263
6365

6464
65(51

6656

6749
6839
6928

6170
6274
6375

6474
6571
6665

6758
6848
6937

6180
6284
6385

6484
6580
6675

6767
6857
6946

6191
6294
6395

6493
6590
(5684

6776
6866
6955

6201
6304
6405

6503
6599
6693

6785
6875
69(54

6212
6314
6416

6513
6609
6702

6794
6884
6972

6222
6325
6425

6622
6618
6712

6803
6893
6981

1 2 3
12 3
12 3

1 2 3
1 2 3
1 2 3

12 3
1 2 3
1 2 3

4 5 6
4 5 6
4 5 6

4 5 6
4 6 6
4 5 6

4 5 6
4 6 6
4 4 6

7 8 9
7 8 9
7 8 9

7 8 9
7 8 9
7 7 8

7 7 8
7 7 8
6 7 8

50 (5990 6998 7007 7016 7024 7033 7042 7050 7059 7067 12 3 3 4 6 6 7 8

51
52
53

54

7076
71G0
7243

7324

7084
7168
7251

7332

7093
7177
7259

7340

7101
7185
7267

7348

7110
7193
7275

7356

7118
7202
7284

7364

7126
7210
7292

7372

7135
7218
7300

7380

7143
7226
7308

7388

7152
7235
7316

739(5

1 2 3
1 2 3
12 2

1 2 2

3 4 5
3 4 5
3 4 5

3 4 6

6 7 8
6 7 7
6 6 7

6 6 7

N 1 2 3 4 5 6 7 8 9 12 2 4 5 6 7 8 9

The proportional parts are stated in full for every tenth at the right-hand side.

The logarithm of any number of four significant figures can be read directly by add-



ing the proportional part correspoTiding to the fourth figure to the tabular number
correspondmg to the first three figures. There may be an error of 1 in the last place.



538 Four Place Trigonometric Functions
[Characteristics of Logarithms ornitted — determine by the usual rule from the value]

Radiaks DT^aPTTfl Sine Tangent Cotangent Cosine
i-.'£*ijri&x>i:<o

Value Logio Value Logio Value Logio Value Logio

.0000

.0029

0°00'
10

.0000

.0029
.0000
.0029

1.0000 .0000 90° 00' 1.5708
1.5679.4637 .4637 343.77 .6363 1.0000 .0000 50

.0058 20 .0058 .7()48 .0058 .7648 171.89 .2352 1.0000 .0000 40 1.5650

.0087 30 .0087 .9408 .0087 .9409 114.59 .0591 1.0000 .0000 30 1.5621

.0116 40 .0116 .0658 .0116 .0658 85.940 .9342 .9999 .0000 20 1.5592

.0145 50 .0145 .1627 .0145 .1627 68.750 .8373 .9999 .0000 10 1.5563

.0175 1°00' .0175 .2419 .0175 .2419 57.290 .7581 .9998 .9999 89° 00' 1.5533

.0204 10 .0204 .3088 .0204 .3089 49.104 .6911 .9998 .9999 50 1.5504

.0233 20 .0233 .3668 .0233 .3669 42.964 .6331 .9997 .9999 40 1.547.-.

.0202 30 .0262 .4179 .02()2 .4181 38.188 .5819 .99f)7 .9999 30 1.5440

.0291 40 .0291 .4637 .0291 .4638 34.368 .5362 .9996 .9998 20 1.5417

.0320 50 .0320 .5050 .0320 .5053 31.242 .4947 .9995 .9998 10 1.5388

.0349 2° 00' .0349 .5428 .0349 .5431 28.636 .4569 .9994 .99f)7 88° 00' 1.5359

.0.378 10 .0378 .5776 .0378 .5779 26.432 .4221 .9993 .9997 50 1.5330

.0407 20 .0407 .6097 .0407 .6101 24.542 .3899 .9992 .9996 40 1.5301

.0436 30 .0436 .6397 .0437 .6401 22.904 .3599 .99{)0 .9996 30 1.5272

.0465 40 .0465 .6677 .0466 .6682 21.470 .3318 .9989 .9995 20 1.5243

.0495 50 .0494 .6940 .0495 .6945 20.20(5 .3055 .t)988 .9995 10 1.5213

.0524 3° 00' .0523 .7188 .0524 .7194 19.081 .2806 .9986 .9994 87° 00' 1.5184

.0553 10 .0552 .7423 .0553 .7429 18.075 .2571 .9985 .9993 50 1.5155

.0582 20 .0581 .7645 .0582 .7652 17.169 .2348 .9983 .9993 40 1.5126

.0611 30 .0610 .7857 .0612 .7865 16..350 .2135 .9981 .9992 30 1.5097

.0640 40 .0640 .8059 .0641 .8067 15.605 .1933 .9980 .9991 20 1.5068

.0669 50 .0669 .8251 .0070 .8261 14.924 .1739 .9978 .9990 10 1.5039

.0698 4° 00' .0698 .8436 .0699 .8446 14.301 .1554 .9976 .9989 86° 00' 1.5010

.0727 10 .0727 .8613 .0729 .8624 13.727 .1376 .9974 .9989 50 1.4981

.0756 20 .0756 .8783 .0758 .8795 13.197 .1205 .9971 .9988 40 1.4952

.0785 30 .0785 .8946 .0787 .8960 12.706 .1040 .9969 .9987 30 1.4923

.0814 40 .0814 .9104 .0816 .9118 12.251 .0882 .9967 .9986 20 1.4893

.0844 50 .0843 .9256 .0846 .9272 11.826 .0728 .9964 .9985 10 1.4864

.0873 6° 00' .0872 .9403 .0875 .9420 11.430 .0580 .9962 .9983 86° 00' 1.4835

.0902 10 .0901 .9545 .0904 .9563 11.059 .0437 .9959 .9982 60 1.4806

.0931 20 .0929 .9682 .0934 .9701 10.712 .0299 .9957 .9981 40 1.4777

.0960 30 .0958 .9816 .0963 .9836 10.385 .0164 .9954 .9980 30 1.4748

.0985) 40 .0987 .9945 .0992 .9966 10.078 .0034 .9951 .9979 20 1.4719

.1018 50 .1016 .0070 .1022 .0093 9.7882 .9907 .9948 .9977 10 1.4690

.1047 6° 00' .1045 .0192 .1051 .0216 9.5144 .9784 .9945 .9976 84° 00' 1.4661

.1076 10 .1074 .0311 .1080 .0336 9.2553 .9664 .9942 .9975 50 1.4632

.1105 20 .1103 .0426 .1110 .0453 9.0098 .9547 .9939 .9973 40 1.4603

.1134 30 .1132 .0539 .1139 .0567 8.7769 .9433 .993(5 .9972 30 1.4573

.1164 40 .1161 .0648 .1169 .0678 8.5555 .9322 .<)i)32 .9971 20 1.4544

.1193 50 .1190 .0755 .1198 .0786 8.3450 .9214 .9929 .9909 10 1.4615

.1222 7° 00' .1219 .0859 .1228 .0891 8.1443 .9109 .9925 .9968 83° 00' 1.4486

.1251 10 .1248 .0961 .1257 .0995 7.9530 .JK)05 M^2 .9966 60 1.4457

.1280 20 .1276 .1060 .1287 .109(i 7.7704 .8904 .9918 .9964 40 1.4428

.1309 30 .1305 .1157 .1317 .1194 7.5958 .880(i .9914 .9^)63 30 1.4399

.1338 40 .1334 .1252 .1346 .1291 7.4287 .8709 .9911 .9961 20 1.4370

.1367 50 .1363 .1345 .1376 .1385 7.2(i87 .8615 .9907 .9959 10 1.4341

.1396 8° 00' .1392 .14.36 .1405 .1478 7.1154 .8522 .9903 .9958 82° 00' 1.4312

.1425 10 .1421 .1525 .1435 .1.569 6.9682 .8431 .9899 .9<)56 50 1.4283

.1454 20 .1449 .1612 .1465 .1658 6.8269 .8342 .9894 .9954 40 1.4254

.148'1 30 .1478 .1697 1495 .1745 6.6912 .8255 .9890 .9952 30 1.4224

.1513 40 .1507 .1781 .1524 .18.31 ().5606 .8169 .9886 .9950 20 1.41^)5

.1542 50 .1536 .1863 .1.5.54 .1915 6.4348 .8085 .9881 .9948 10 1.4166

.1571 9° 00' .1564 .1943 .1584 .1997 6.3138 .8003 .9877 .9946 81° 00' 1.4137

V^alne Logjo Value Lopin Value Lopio Value Logio Degrees Rapians
Cosine Cotangent Tangent Sink



Four Place Trigonometric Functions 539
[Charactoristics of Logarithms omitted— letermine by the usual rule from the value]

Radians Degeees Sine Tangent Cotangent Cosine
7alue Logio Value Logio Value Logio V^alue Logio

.1571 9° 00' .1564 .1943 .1584 .1997 6.3138 .8003 .9877 .9946 81° 00' 1.4137

.1600 10 .1593 .2022 .1614 .2078 6.1970 .7922 .9872 .9944 50 1.4108

.1029 20 .1622 .2100 .1044 .2158 6.0844 .7842 .98(38 .9942 40 1.4079

.1058 30 .1650 .2176 .1073 .2236 5.9758 .7764 .9863 .9940 30 1.4050

.1087 40 .1079 .2251 .1703 .2313 5.8708 .7687 .9858 .9938 20 1.4021

.1716 50 .1708 .2324 .1733 .2389 5.7694 .7611 .9853 .9936 10 1.3992

.1745 10° 00' .1736 .2397 .1763 .2463 5.6713 .7537 .9848 .9934 80° 00' 1.3963

.1774 10 .1765 .2468 .1793 .2536 5.5764 .7464 .9843 .9931 50 1.3934

.1804 20 .1794 .2538 .1823 .2609 5.4845 .7391 .9838 .9929 40 1.3904

.1833 30 .1822 .2600 .1853 .2680 5.3955 .7320 .9833 .992; 30 1.3875

.1802 40 .1851 .2674 .1883 .2750 5.3093 .7250 .9827 .9924 20 1.3840

.1891 50 .1880 .2740 .1914 .2819 5.2257 .7181 .9822 .9922 10 1.3817

.1920 11°00' .1908 .2806 .1944 .2887 5.1446 .7113 .9816 .9919 79° 00' 1.3788

.1949 10 .1937 .2870 .1974 .2953 5.0058 .7047 .9811 .9917 50 1.3759

.1978 20 .1965 .2934 .2004 .3020 4.9894 .6980 .9805 .9914 40 1.3730

.2007 30 .1994 .25)97 .2035 .3085 4.9152 .6915 .9799 .9912 30 1.3701

.2036 40 .2022 .3058 .2065 .3149 4.8430 .6851 .9793 .9909 20 1.3672

.2065 50 .2051 .3119 .2095 .3212 4.7729 .6788 .9787 .9907 10 1.3&43

.2094 12° 00' .2079 .3179 .2126 .3275 4.7046 .6725 .9781 .9904 78° 00' 1.3014

.2123 10 .2108 .3238 .2156 .3330 4.6382 .6664 .9775 .9901 50 1.3584

.2153 20 .2136 .3296 .2186 .3397 4.5736 .6603 .9769 .9899 40 1.3555

.2182 30 .2164 .3353 .2217 .3458 4.5107 .6542 .9763 .9896 30 1.3526

.2211 40 .2193 .3410 .2247 .3517 4.4494 .6483 .9757 .9893 20 1.3497

.2240 60 .2221 .3466 .2278 .3576 4.3897 .6424 .9750 .9890 10 1.3468

.2269 13° 00' .2250 .3521 .2309 .3634 4.3315 .636() .9744 .9887 77° 00' 1.3439

.2298 10 .2278 .3575 .2339 .3691 4.2747 .6309 .9737 .9884 50 1.3410

.2327 20 .2306 .3629 .2370 .3748 4.2193 .0252 .9730 .9881 40 1.3381

.2356 30 .2334 .3682 .2401 .3804 4.1653 .6196 .9724 .9878 30 1.3352

.2385 40 .2363 .3734 .2432 .3859 4.1126 .6141 .9717 .9875 20 1.3323

.2414 60 .2391 .3786 .2462 .3914 4.0611 .6080 .9710 .9872 10 1.3294

.2443 14° 00' .2419 .3837 .2493 .3968 4.0108 .6032 .9703 .9869 76° 00' 1.3265

.2473 10 .2447 .3887 .2524 .4021 3.9017 .5979 .96% .9866 50 1.3235

.2502 20 .2476 .3937 .2555 .4074 3.9136 .5926 .9689 .9863 40 1.3206

.2531 30 .2504 .3986 .2586 .4127 3.8667 .5873 .9681 .9859 30 1.3177

.2560 40 .2532 .4035 .2617 .4178 3.8208 .5822 .9674 .9856 20 1.3148

.2589 50 .2560 .4083 .2648 .4230 3.7760 .5770 .9(367 .9853 10 1.3119

.2618 15°00' .2588 .4130 .2679 .4281 3.7321 .5719 .9659 .9849 75° 00' 1.3090

.2647 10 .2616 .4177 .2711 .4331 3.0891 .5669 .9652 .9846 50 1.3061

.2676 20 .2644 .4223 .2742 .4381 3.6470 .5619 .9644 .9843 40 1.3032

.2705 30 .2672 .4269 .2773 .4430 3.6059 .5570 .9(>36 .9839 30 1.3003

.2734 40 .2700 .4314 .2805 .4479 3.5656 .5521 .9(528 .9836 20 1.2974

.2763 60 .2728 .4359 .2836 .4527 3.5261 .5473 .9621 .9832 10 1.2945

.2793 16° 00' .2756 .4403 .2867 .4575 3.4874 .5425 .9613 .9828 74° 00' 1.2915

.2822 10 .2784 .4447 .2899 .4622 3.4495 .5378 .9605 .9825 50 1.2886

.2851 20 .2812 .4491 .2931 .4669 3.4124 .5331 .9596 .9821 40 1.2857

.2880 30 .2840 .4533 .2962 .4716 3.3759 .5284 .9588 .9817 30 1.2828

.2909 40 .2868 .4576 .2994 .4762 3.3402 .5238 .9580 .9814 20 1.2799

.2938 50 .2896 .4618 .3026 .4808 3.3052 .5192 .9572 .9810 10 1.2770

.2967 17° 00' .2924 .4659 .3057 .4853 3.2709 .5147 .9563 .9806 73° 00' 1.2741

.2996 10 .2952 .4700 .3089 .4898 3.2371 .5102 .9555 .9802 50 1.2712

.3025 20 .2979 .4741 .3121 .4943 3.2041 .5057 .9546 .9798 40 1.2683

.3054 30 .3007 .4781 .3153 .4987 3.1716 .5013 .9537 .9794 30 1.2654

.3083 40 .3035 .4821 .3185 .5031 3.1397 .4969 .9528 .9790 20 1.2625

.3113 50 .3062 .4861 .3217 .5075 3.1084 .4925 .9520 .9786 10 1.2696

.3142 18^00' .3090 .4900 .3249 .5118 3.0777 .4882 .9511 .9782 72° 00' 1.2566

Value LoSio Value Loffio Value T^'^ffio Value Logjo Degeees Radians
Co'JINE Cotangent Tangent Sine



540 Four Place Trigonometric Functions
[Characteristics of Logarithms omitted — ietermine by the usual rule from the value]

Kadians Deobees Sine Tangent Cotangent Cosine
Value Logio Value Logio Value Logio Value Lopio

.3142 18° 00' .3090 .4900 .3249 .5118 3.0777 .4882 .9511 .9782 72° 00' 1.2566

.3171 10 .3118 .4939 .3281 .6161 3.0475 .4839 .9502 .9778 60 1.2537

.3200 20 .3145 .4977 .3314 .6203 3.0178 .4797 .9492 .9774 40 1.2508

.3229 30 .3173 .5015 .3346 .6245 2.9887 .4756 .9483 .9770 30 1.2479

.3258 40 .3201 .5052 .3378 .6287 2.9600 .4713 .9474 .9765 20 1.2450

.3287 50 .3228 .5090 .3411 .5329 2.9319 .4671 .9465 .9761 10 1.2421

.3316 19° 00' .3256 .5126 .3443 .5370 2.9042 .4630 .9455 .9767 71° 00' 1.2392

.3346 10 .3283 .5163 .3476 .5411 2.8770 .4689 .9446 .9752 60 1.2363

.3374 20 .3311 .5199 .3508 .5451 2.8502 .4649 .9436 .9748 40 1.2334

.3403 30 .3338 .5235 .3541 .5491 2.8239 .4509 .9426 .9743 30 1.2305

.3432 40 .3365 .5270 .3574 .6531 2.7980 .4469 .9417 .9739 20 1.2275

.3462 50 .3393 .5306 .3607 .5571 2.7725 .4429 .9407 .9734 10 1.2246

.3491 20° 00' .3420 .5341 .3640 .6611 2.7476 .4389 .9397 .9730 70° 00' 1.2217

.3520 10 .3448 .5375 .3673 .5650 2.7228 .4350 .9387 .9725 50 1.2188

.3549 20 .3475 .5409 .3706 .5689 2.6986 .4311 .9377 .9721 40 1.2159

.3578 30 .3502 .5443 .3739 .6727 2.6746 .4273 .9367 .9716 30 1.2130

.3607 40 .3529 .5477 .3772 .6766 2.6511 .4234 .9356 .9711 20 1.2101

.3636 50 .3557 .5510 .3805 .5804 2.6279 .4196 .9346 .9706 10 1.2072

.3665 21° 00' .3584 .5643 .3839 .5842 2.6051 .4158 .9336 ,9702 69° 00' 1.2043

.3694 • 10 .3611 .5576 .3872 .6879 2.5826 .4121 .9325 .9697 60 1.2014

.3723 20 .3638 .5609 .3906 .5917 2.5605 .4083 .9315 .9692 40 1.1985

.3752 30 .3m5 .5641 .3939 .5954 2.5386 .4046 .9304 .9687 30 1.1956

.3782 40 .3692 .5673 .3973 .5991 2.5172 .4009 .9293 .9682 20 1.1926

.3811 50 .3719 .5704 .4006 .6028 2.4960 .3972 .9283 .9677 10 1.1897

.3840 22° 00' .3746 .6736 .4040 .6064 2.4751 .3936 .9272 .9672 68° 00' 1.1868

.3869 10 .3773 .5767 .4074 .6100 2.4545 .3900 .9261 .9667 50 1.1839

.3898 20 .3800 .5798 .4108 .6136 2.4342 .3864 .9250 .9661 40 1.1810

.3927 30 .3827 .6828 .4142 .6172 2.4142 .3828 .9239 .9(556 30 1.1781

.3956 40 .3854 .5859 .4176 .6208 2.3945 .3792 .9228 .9651 20 1.1752

.3985 50 .3881 .5889 .4210 .6243 2.3750 .3767 .9216 .9646 10 1.1723

.4014 23° 00' .3907 .6919 .4245 .6279 2.3559 .3721 .9205 .9640 67° 00' 1.1694

.4043 10 .3934 .5948 .4279 .6314 2.3309 .3686 .9194 .9635 50 1.1(>65

.4072 20 .3961 .5978 .4314 .6348 2,3183 .3652 .9182 .9629 40 1.1636

.4102 30 .3987 .6007 .4348 .6383 2.2998 .3617 .9171 .9624 30 1.160(5

.4131 40 .4014 .6036 .4383 .6417 2.2817 .3583 .9159 .9618 20 1.1577

.4160 60 .4041 .6065 .4417 .6462 2.2637 .3548 .9147 .9613 10 1.1548

.4189 24° 00' .4067 .6093 .4452 .6486 2.24(50 .3514 .9135 .9607 66° 00' 1.1519

.4218 10 .4094 .6121 .4487 .6520 2.2286 .3480 .9124 .9602 50 1.1490

.4247 20 .4120 .6149 .4522 .(5553 2.2113 .3447 .9112 .9596 40 1.1461

.4276 30 .4147 .6177 .4557 .6587 2.1943 .3413 .9100 .9590 30 1.1432

.4305 40 .4173 .6206 .4592 .6620 2.1775 .3380 .9088 .9584 20 1.1403

.4334 50 .4200 .6232 .4628 .6654 2.1609 .3346 .9075 .9579 10 1.1374

.4363 25° 00' .4226 .6259 .4663 .6687 2.1445 .3313 .9063 .9573 65° 00' 1.1345

.4392 10 .4253 .6286 .4699 .6720 2.1283 .3280 .<X)51 .95(57 50 1.1316

.4422 20 .4279 .6313 .4734 .6752 2.1123 .3248 .9038 .9561 40 1.128(5

.4451 30 .4305 .6340 .4770 .6785 2.0965 .3215 .9026 .95,^5 30 1.1257

.4480 40 .4331 .6.366 .4806 .6817 2.0809 .3183 .9013 .9549 20 1.1228

.4509 50 .4358 .6392 .4841 .6850 2.0656 .3150 .9001 .9543 10 1.1199

.4538 26° 00' .4384 .6418 .4877 .6882 2.0503 .3118 .8988 .9537 64° 00' 1.1170

.4567 10 .4410 .6444 .4913 .6914 2.0353 .3086 .8975 .9.530 50 1.1141

.4596 20 .4436 .6470 .4950 .6946 2.0204 .3054 .89(52 .9624 40 1.1112

.4625 30 .4462 .0495 .4986 .(5977 2.0057 .3023 .8949 .9518 30 1.1083

.4654 40 .4488 .6621 .5022 .7009 1.9^)12 .2991 .89:^5 .9512 20 1.1054

.4083 60 .4514 .6646 .5059 .7040 1.9768 .2960 .8923 .9505 10 1.1025

.4712 27° 00' .4540 .6670 .6096 .7072 1.9626 .2928 .8910 .9499 63° 00' 1.0996

Value Logio Value Lopio Value Logio Value Log,o Degrees Radians
Cosine Cotangent Tangent Sine



Four Place Trigonometric Functions 541
[Oharaoteristics of Logarithms omitted— determine by the usual rule from the value]

Radians Dbgebes SI.B Tangent Cotangent Cosine
Value Loffio Value Logio Value Logio Value Logio

.4712 27° 00' .4540 .6570 .5095 .7072 1.9626 .2923 .8910 .9499 63° 00' 1.0996

.4741 10 .4566 .6595 .5132 .7103 1.9486 .2897 .8897 .9492 50 1.0966

.4771 20 .4592 .6620 .5169 .7134 1.9347 .2866 .8884 .948(5 40 1.0937

.4800 30 .4617 .6644 .5206 .7165 1.9210 .2835 .8870 .9479 30 1.0908

.4829 40 .4643 .6663 .5243 .7196 1.9074 .2804 .8857 .9473 20 1.0879

.4858 60 .4669 .6692 .5280 .7226 1.8940 .2774 .8843 .9466 10 1.0850

.4887 28° 00' .4695 .6716 .5317 .7257 1.8807 .2743 .8829 .9459 62° 00' 1.0821

.4Q16 10 .4720 .6740 .5354 .7287 1.8676 .2713 .8816 .9453 50 1.0792

.4945 20 .4746 .6763 .5392 .7317 1.8546 .2683 .8802 .9446 40 1.0703

.4974 30 .4772 .6787 .5430 .7348 1.8418 .2652 .8788 .9439 30 1.0734

.5003 40 .4797 .6810 .5167 .7378 1.8291 .2(522 .8774 .9432 20 1.0705

.5032 50 .4823 .6833 .5505 .7408 1.8165 .2592 .8760 .9425 10 1.0676

.5061 29° 00' .4848 .6856 .5543 .7438 1.8040 .2562 .8746 .9418 61° 00' 1.0647

.5091 10 .4874 .6878 .5581 .7467 1.7917 .2533 .8732 .9411 50 1.0617

.5120 20 .4899 .6901 .5619 .7497 1.7796 .2503 .8718 .9404 40 1.0588

.5149 30 .4924 .6923 .5658 .7526 1.7675 .2474 .8704 .9397 30 1.0559

.5178 40 .4950 .6946 .5696 .7556 1.7556 .2444 .8689 .9390 20 1.0530

.5207 50 .4975 .6968 .5735 .7585 1.7437 .2415 .8675 .9383 10 1.0501

.5236 30° 00' .5000 .6990 .5774 .761i 1.7321 .2386 .8660 .9375 60° 00' 1.0472

.5265 10 .5025 .7012 .7(544 1.7205 .2356 .8646 .9368 50 1.0443

.5294 20 .50jO .7033 .5851 .7673 1.7090 .2327 .8631 .9361 40 1.0414

.5323 30 .5075 .7055 .5890 .7701 1.6977 .2299 .8616 .9353 30 1.0385

.5352 40 .5100 .7076 .5930 .7730 1.6864 .2270 .8601 .9346 20 1.0356

.5381 50 .5125 .7097 .5969 .7759 1.6753 .2241 .8587 .9338 10 1.0327

.5411 31°00' .5150 .7118 .6009 .7788 1.6643 .2212 .8572 .9331 59° 00' 1.0297

.5440 10 .5175 .7139 .6048 .7816 1.6534 .2184 .8557 .9323 .50 1.0268

.5469 20 .5200 .7160 .6088 .7845 1.6426 .2155 .8542 .9315 40 1.0239

.5498 30 .5225 .7181 .6128 .7873 1.6319 .2127 .8526 .9308 30 1.0210

.5527 40 .5250 .7201 .6168 .7902 1.6212 .2098 .8511 .9300 20 1.0181

.5556 50 .5275 .7222 .6208 .7930 1.6107 .2070 .8496 .9292 10 1.0152

.5585 32° 00' .5299 .7242 .6249 .7958 1.6003 .2042 .8480 .9284 58° 00' 1.0123

.5614 10 .5324 .7262 .6289 .7986 1.5900 .2014 .8465 .9276 50 1.0094

.5643 20 .5348 .7282 .6330 .8014 1.5798 .1986 .8450 .9268 40 1.0065

.5672 30 .5373 .7302 .6371 .8042 1.5697 .1958 .8434 .9260 30 1.0036

.5701 40 .5398 .7322 .6412 .8070 1.5597 .1930 .8418 .9252 20 1.0007

.5730 50 .5422 .7342 .6453 .8097 1.5497 .1903 .8403 .9244 10 .9977

.5760 33° 00' .5446 .7361 .6494 .8125 1.5399 .1875 .8387 .9236 57° 00' .9948

.5789 10 .5471 .7380 .6536 .8153 1.5301 .1847 .8371 .9228 50 .9919

.5818 20 .5495 .7400 .6577 .8180 1.5204 .1820 .8.355 .9219 40 .9890

.5847 30 .5519 .7419 .6619 .8208 1.5108 .1792 .8339 .9211 30 .9861

.587(5 40 .5544 .7438 .6(561 .8235 1.5013 .1765 .8323 .9203 20 .9832

.5905 50 .5568 .7457 .6703 .8263 1.4919 .1737 .8307 .9194 10 .9803

.5934 34° 00' .5592 .7476 .6745 .8290 1.4826 .1710 .8290 .9186 66° 00' .9774

.5903 10 .5616 .7494 .6787 .8317 1.4733 .1683 .8274 .9177 50 .9745

.5992 20 .5640 .7513 .6830 .8344 1.4641 .1656 .8258 .9169 40 .9716

.6021 30 .5664 .7531 .6873 .8371 1.4550 .1629 .8241 .9160 30 .9687

.6050 40 .5688 .7550 .6916 .8398 1.4460 .1602 .8225 .9151 20 .9657

.6080 50 .5712 .7568 .6959 .8425 1.4370 .1575 .8208 .9142 10 .9628

.6109 35° 00' .5736 .7586 .7002 .8452 1.4281 .1548 .8192 .9134 55° 00' .9599

.6138 10 .5760 .7604 .7046 .8479 1.4193 .1521 .8175 .9125 50 .9570

.6167 20 .5783 .7622 .7089 .8506 1.4106 .1494 .8158 .9116 40 .9541

.6196 30 .5807 .7640 .7133 .8533 1.4019 .1467 .8141 .9107 30 .9512

.6225 40 .5831 .7657 .7177 .8559 1.3934 .1441 .8124 .9098 20 .9483

.6254 50 .5854 .7675 .7221 .8586 1.3848 .1414 .8107 .9089 10 .9454

.6283 36° 00' .5878 .7692 .7265 .8613 1.-3764 .1387 .8090 .9080 54° 00' .9425

Value Logio Value Loffio Value Logio Value I^Ogio Degeees Radians
Cosine Cotangent Tangent Sine



542 Four Place Trigonometric functions
[Characteristics of Logarithms omitted — determine by the usual rule from the value]

Radians Deobeee 8lNB Tangent Cotangent Cosine
Value Logio Value Logio Value Logifl Value Logic

.6283 36° 00' .5878 .7692 .7265 .8613 1.3764 .1387 .8090 .9080 64° 00' .9425

.6332 10 .5901 .7710 .7310 .8639 1.3680 .1361 .8073 .9070 60 .9396

.6341 20 .5925 .7727 .7355 .86(J6 1.3597 .1334 .8056 .9061 40 .9367

.6370 30 .5948 .7744 .7400 .8692 1.3514 .1308 .8039 .9052 30 .9338

.6400 40 .5972 .7761 .7445 .8718 1.3432 .1282 .8021 .9042 20 .9308

.6429 50 .5995 .7778 .7490 .8745 1.3351 .1255 .8004 .9033 10 .9279

.6458 37° 00' .6018 .7795 .7536 .8771 1.3270 .1229 .7986 .9023 63° 00' .9250

.6487 10 .6041 .7811 .7581 .8797 1.3190 .1203 .79f39 .tX)14 50 .9221

.6516 20 .()065 .7828 .7627 .8824 1.3111 .1176 .7951 .9004 40 .9192

.6545 30 .6088 .7844 .7()73 .8850 1.3032 .1150 .7934 .8995 30 .9163

.6574 40 .6111 .7861 .7720 .8876 1.2954 .1124 .7916 .8985 20 .9134

.6603 50 .6134 .7877 .77(J6 .8902 1.2876 .1098 .7898 .8975 10 .9105

.6632 38° 00' .6157 .7893 .7813 .8928 1.2799 .1072 .7880 .8965 52° 00' .9076

.6601 10 .6180 .7910 .7860 .8954 1.2723 .1046 .7862 .8955 50 .9047

.6u90 20 .6202 .7926 .7907 .8980 1.2647 .1020 .7844 .8945 40 .9018

.6720 30 .6225 .7941 .79r>4 .9006 1.2572 .0994 .7826 .8935 30 .8988

.6749 40 .6248 .7957 .8002 .9032 1.2497 .0968 .7808 .8925 20 .8959

.6778 50 .6271 .7973 .8050 .9058 1.2423 .0942 .lim .8915 10 .8930

.6807 39° 00' .6293 .7989 .8098 .9084 1.2349 .0916 .7771 .8905 61° 00' .8901

.6836 10 .6316 .8004 .8146 .9110 1.2276 .0890 .7753 .8895 50 .8872

.6865 20 .6338 .8020 .8195 .9135 1.2203 .0865 .7735 .8884 40 .8843

.6894 30 .6361 .8035 .8243 .9161 1.2131 .0839 .7716 .8874 30 .8814

.6923 40 .6383 .8050 .8292 .9187 1.2059 .0813 .7698 .8864 20 .8785

.6952 60 .6406 .8066 .8342 .9212 1.1988 .0788 .7679 .8853 10 .8756

.6981 40° 00' .6428 .8081 .8391 .9238 1.1918 .0762 .7660 .8843 60° 00' .8727

.7010 . 10 .6450 .8096 .8441 .9264 1.1847 .0736 .7642 .8832 50 .8698

.7039 20 .6472 .8111 .8491 .9289 1.1778 .0711 .7623 .8821 40 .8668

.7069 30 .6494 .8125 .8541 .9315 1.1708 .0685 .7604 .8810 30 .8639

.7098 40 .6517 .8140 .8591 .9341 1.1640 .0659 .7585 .8800 20 .8610

.7127 50 .6539 .8155 .8642 .9366 1.1571 .0634 .7566 .8789 10 .8581

.7156 41° 00' .6561 .8169 .8693 .9392 1.1504 .0608 .7547 .8778 49° 00' .8552

.7185 10 .6583 .8184 .8744 .9417 1.1436 .0583 .7528 .8767 50 .8523

.7214 20 .6604 .8198 .87m .9443 1.1369 .0557 .7509 .8756 40 .8494

.7243 30 .6626 .8213 .8847 .94(38 1.1303 .0532 .7490 .8745 30 .8465

.7272 40 .6648 .8227 .8899 .9494 1.1237 .050(3 .7470 .8733 20 .8436

.7301 50 .6670 .8241 .8952 .9519 1.1171 .0481 .7451 .8722 10 .8407

.7330 42° 00' .6691 .8255 .9004 .9544 1.1106 .0456 .7431 .8711 48° 00' .8378

.7359 10 .6713 .8269 .9057 .9570 1.1041 .0430 .7412 .8699 50 .8348

.7389 20 .6734 .8283 .9110 .9595 1.0977 .0405 .7392 .8688 40 .8319

.7418 30 .6756 .8297 .91(33 .9()21 1.0913 .0379 .7373 .8676 30 .8290

.7447 40 .6777 .8311 .9217 .9646 1.0850 .0354 .7353 .8665 20 .8261

.7476 50 .()799 .8324 .9271 .9671 1.0786 .0329 .7333 .8(353 10 .8232

.7505 43° 00' .6820 .8338 .9325 .9697 1.0724 .0303 .7314 .8641 47°00' .8203

.7534 10 .6841 .8351 .9380 .9722 1.0661 .0278 .7294 .8629 60 .8174

.7563 20 .6862 .8365 .9435 .9747 1.0599 .0253 .7274 .8618 40 .8145

.7592 30 .6884 .8378 .9490 .9772 1.0538 .0228 .7254 .8606 30 .8116

.7621 40 .6905 .8391 .9545 .9798 1.0477 .0202 .7234 .8594 20 .8087

.7650 60 .6926 .8405 .9601 .9823 1.0416 .0177 .7214 .8582 10 .8058

.7679 44° 00' .6947 .8418 .9657 .9848 1.0355 .0152 .7193 .8569 46° 00' .8029

.7709 10 .6967 .»i31 .9713 .9874 1.0295 .012(3 .7173 .8567 60 .7999

.7738 20 .6988 .8444 .9770 .9899 1.0235 .0101 .7153 .8545 40 .7970

.7767 30 .7009 .8457 .9827 .9924 1.0176 .0076 .7133 .8532 30 .7941

.7796 40 .7030 .84(59 .9884 .9949 1.0117 .0051 .7112 .8520 20 .7912

.7825 50 .7050 .8482 .9942 .9975 1.0058 .0025 .7092 .8507 10 .7883

.7864 46° 00' .7071 .8495 1.0000 .0000 1.0000 .0000 .7071 .849.-. 45° 00' .7854

' Value Logjo Value Lopio Value Logio Value Logio DSGSEEB Radians
OOSINB Cotangent Tangent Sine
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Abscissa, 39.

Absolute error, 236.

Absolute value, of a directed quan-
tity, 5 ; of a number, 36, 438.

Addition, 41 ;
graphic, 50 ; laws

of, 52 ; of angles, 145 ; formulas,

in trigonometry, 201 ; with

rounded numbers, 238 ; of vectors,

435.

Algebra, fundamental theorem of,

456.

Algebraic functions, 143.

Algebraic scale, 3, 5.

Analytic geometry, 84.

Analytic representation of a function,

21.

Angle, definitions of, 143 ; directed

—s, 143, 306 ; measurement of,

144, 188, 190; addition and
subtraction of, 145 ; functions of,

147, 168; between lines, 146

306, 500; between planes, 506
of elevation and depression, 150
use of, in artillery service, 190
vectorial, 163 ; —s of triangle,

210; trisection of, 388; of a
complex number, 438.

Approximation, Newton's method of,

471.

Arbitrary functions, 18, 19.

Arc of a circle, 189.

Archimedes, 386.

Area, of a triangle, 186, 298 fif. ; of

any polygon, 301.

Arithmetic mean, 214.

Arithmetic progression, 216.

Arithmetic scale, 3, 5.

Artillery service, use of angles in,

190.

Asymptotes, 278, 280, 350.

Axes, of reference, 38, 495 ; of ellipse,

273, 340 ; of hyperbola, 280, 349.

Axioms, 53.

Axis, of parabola, 109, 354; polar,

163 ; major and minor, 340 ; trans-

verse, 280, 349 ; conjugate, 349.

Binomial theorem, 428.

Briggian logarithms, 227.

Bundle of planes, 510.

Cardioid, 383.

Center, of pencil of lines, 91 ; of

ellipse, 273, 282, 340; of circle,

283, 320 ; of hyperbola, 280, 349

;

of projection, 370; of bundle of

planes, 510.

Change, rate of, 68.

Change ratio, 69.

Characteristic of a logarithm, 227
ff.

Circle, 320 ff . ; center and radius

of, 320 ; cartesian equation of, 270,

320 ff
. ;

parametric equations of,

392 ;
polar equation of, 381 ; as

special case of an ellipse, 342

;

intersection of two —s, 330 ; or-

thogonal —s, 331, 334; pencil of

—s, 332 ; radical axis of, 332 ; radi-

cal center of, 334 ; tangent to, point

form, 324 ; slope form, 325 ; tan-

gents from an external point to,

327; polar of point with respect

to, 328 ; inversion with respect

to, 336.

Cissoid, 384.

Cofunction, 177.

Colatitude, 530.

CoUinearity, condition for, 301.

Combinations, 420 ff

.

Commensurable segments, 33.

Common logarithms, 227.

Completing the square, 113, 283 ff.

543
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Complex numbers, 432 ff. ; defini-

tion of, 432 ; geometric inter-

pretation of, 433, 436 S. ; absolute

value, angle, argument of, 438

;

polar form of, 438 ; multiplication

and division of, 440; powers and
roots of, 444.

Complex roots of an equation, 462.

Components of a vector, 436.

Composite number, 414.

Computation, numerical, 231, 236 ff.,

242 ff.

Conchoid, 385.

Cone, 528.

Conic or Conic section, 337 ff. ; as

sections of a cone, 370. (See

circle, ellipse, parabola, hyperbola.)

Conjugate axis, 349.

Conjugate complex numbers, 432.

Conjugate diameters, 376.

Conjugate hyperbolas, 353.

Consistent equations, 94, 491.

Constant function, 18.

Continuous functions, 18, 102, 449.

Coordinates, on a line, 37 ; rectan-

gular, in a plane, 38 ; rectangular,

in space, 495 ; polar, in a plane,

163, 377 ff. ; polar, in space, 530

;

spherical, 530; cylindrical, 531.

Cosecant, 168; graph of, 173.

Cosine, definition of, 147 ; variation

of, 159 ;
graph of, 159 ; graph

of, in polar coordinates, 166 ; line

representation of, 169 ; law of—s,

180 ; direction —s of a line, 498.

Cotangent, definition of, 168; graph
of, 173; line representation of,

169.

Coversed sine, 168.

Cube, duplication of, 388; table of

—s, and — roots, 634.

Cubic function, 129 ff.

Cycloid, 399.

Cylinders, 515.

Cylindrical co5rdinates, 531.

Decreasing function, 24.

De Moivre's theorem, 443.

Dependent variable, 12.

Depressed equation, 469.

Derivative, of a function, 451, 468 flF.

;

successive —s, 458.

Derived function, 451.

Descartes's rule of signs, 466.

Detached coefficients, 402 ff.

Determinants, 475 ff. ; definition of,

475, 478, 483 ; evaluation of, 488

;

properties of, 483 ff, ; minor of,

485 ; Laplace's expansion of, 486 ;

solution of equations by means of,

476, 480, 490.

Diameter, of a conic, 373 ; conjugate—s, 376.

Diodes, 384.

Directed angles, 143, 306.

Directed lines, 30G, 500.

Directed quantities, 4.

Directed segments, 5, 48, 497.

Direction angles and cosines, 498.

Directrix, of conic, 337 ; of ellipse,

340; of hyperbola, 350; of parab-
ola, 355.

Discontinuous functions, 18.

Discriminant of a quadratic, 124.

Distance, between two points in a
plane, 294 ; in space, 499 ; of a
point from a line, 311 ; of a point
from a plane, 508.

Division, by zero, 46 ; with rounded
numbers, 241 ; of complex
numbers, 440; point of, 295,

501 ;— transformation, 404.

Duplication of cube, 388.

Eccentricity, 337.

Element of a determinant, 475, 478.

Ellipse, definition of, 272, 338
axes and center of, 273, 340
equations of, 272, 282, 338 ff.

slope of, 273 ; construction of,

346 ; focal radii of, 345 ; latus

rectum of, 343 ; parametric equa-
tions of, 347, 393 ; properties of,

340, 342, 365, 373; vertices,

343.

Ellipsoid, 518 ff.

Elliptic paraboloid, 526.

Empirical function, 18.

Equality, 51 ; conditional and un-

conditional, 61.
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Equation, definition of, 61 ; linear

—s, 64, 83, 93 ff ., 509 ;
quadratic,

120 £f.; trigonometric —s, 174;

exponential —s, 234 ; solution by
determinants, 476, 480, 490; in

p-form, 467 ; depressed, 469

;

parametric, 392 ff.

Error, absolute and relative, 236.

Explicit function, 81.

Exponential equations, 234.

Exponential function, 217 ff.

Exponents, 53, 218.

External secant, 168.

Factor, 51 ; of a polynomial, 404,

407; — theorem, 411.

Factoring, solution of quadratic

equation by, 121.

Fire, indirect, in artillery service,

190.

Focal radii, of ellipse, 345 ; of hyper-

bola, 353.

Focus, of conic, 337 ; of ellipse, 340

;

of hyperbola, 350; of parabola,

355.

Forces, parallelogram of, 184, 435.

Fractions, 33, 58 ;
partial, 416 fif

.

Function, idea of, 1 ; definition of,

28 ; arbitrary, constant, empirical,

18; continuous, 18, 102, 449;
representation of, 10, 13, 21, 22;
increasing and decreasing, 24

;

linear, 64 ff., 494 ff. ;
quadratic,

98 ff., 265 ff., 514 ff. ; cubic, 129 ff.

;

power, 140; trigonometric, 147 ff.,

168 ff.; logarithmic, 212 ff. ; ex-

ponential, 217 ff. ;
polynomial,

449 ff. ; explicit and implicit, 81

;

inverse trigonometric, 192 ff. ; sum
of linear —s, 79 ; tables of—s,

534 ff. ; two-valued, 20, 265 ff.

Functional notation, 409.

Fundamental theorem of algebra,

456.

Geometric mean, 214.

Geometric progression, 216.

Geometric representation, see graphic
representation.

Graphic addition, 7, 50.

2n

Graphic interpolation, 13.

Graphic representation, 3, 10, 37, 64,

433, 436 ff.

Graphic solution of problems, 78,

123, 470.

Graphs, statistical, 26 ; of linear

functions, 72 ; of quadratic func-

tions, 99 ff., 265 ff. ; of cubic

functions, 129 ff. ; of polynomials,

452 ; of trigonometric functions,

158, 159, 161, 166, 173; of the

exponential function, 221 ; of the

logarithmic function, 224 ; in

polar coordinates, 164, 378 ff. ; of

parametric equations, 395. (.See

entries under various classes of

functions for further details.)

Hesse's normal form of the equation
of a straight line, 316.

Highest common factor, 407.

Hooke's law, 71.

Hyperbola, definition of, 280, 338;
axes and center, 280, 349 ; vertices

of, 349; asymptotes of, 278,

280, 355; construction of, 354;
equations of, 279, 283, 348 ff.;

parametric equations of, 393

;

latus rectum of, 350 ;
geometric

properties of, 349, 350, 368;
tangents and normals to, 359;
conjugate —s, 353.

Hyperbolic curves, 140.

Hyperbolic paraboloid, 527.

Hyperbolic spiral, 386.

Hyperboloid, of one sheet, 621 ;

of two sheets, 524.

Hypocycloid, 400.

Identities, definition of, 61 ; trigono-

metric, 171.

Imaginary number, 432 ff.

Implicit functions, 81 ; quadratic
functions, 265 ff.

Incommensurable quantities, 34.

Increasing function, 24.

Independent variable, 12.

Infinity, 48.

Initial line, 163.

Inscribed circle, 187.
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Integer, 33 ; properties of, 414.

Intercept, 74, 517 ;
— form of equa-

tion of straight line, 315.

Interpolation, 13, 77, 230.

Intersection, of two lines, 93 ; of

two circles, 330; of a line and a
conic, 357.

Inverse trigonometric functions,

192 ff.

Inversion, with respect to a circle,

336 ; of order, 482.

Inversor of Peaucellier, 336.

Irrational numbers, 34 ; as roots of

an equation, 470.

Laplace's expansion of a determi-

nant, 486.

Latus rectum, of an ellipse, 343 ; of a
hyperbola, 350 ; of a parabola, 355.

Law, of signs, 49, 466; —s of ex-

ponents, 53, 220; of sines, 180/
of cosines, 180 ; of tangents, 209.

Less than, 39.

Limafon, 383.

Line representation of trigonometric
functions, 169.

Linear equations, 64, 83, 93, 476,

480, 490, 509.

Linear functions, 64 fif., 494 ff.

Linear interpolation, 77.

Locus, of equation in rectangular
coordinates, 67, 83, 509 ; in polar
coordinates, 377.

Logarithm, definition of, 223 ; in-

vention of, 212; laws of, 225;
systems of (natural and common),
226, 227 ; characteristic and man-
tissa of, 227 ff. ; use of tables of,

229; —s in computation, 231,

242 £F.; tables of, 536 ff.

Logarithmic paper, 260 ff.

Logarithmic scale, 252.

Logarithmic spiral, 387.

Longitude, 530.

Magnitude, 4.

Major axis of ellipse, 340.

Mathematical analysis, 30.

Maxima and Minima, 109, 137, 453,

455.

Measure, unit of, 2. 33, 34, 144, 188.

Menelaus, theorem of, 319.

Midpoint of a segment, 295, 502.

MU, 190.

Minor of a determinant, 485.

Minor axis of ellipse, 340.

Multiple roots, 460.

Multiple-valued function, 20, 265 ff.

Multiplication, 44, 50, 52, 239, 440.

Napier, J., 212.

Natural logarithms, 226.

Newton's method of approximation,
471 ff.

Nicomedes, 385.

Normal, to a curve, 359 ; — form of

the equation of a straight line, 316
;

of a plane, 505.

Number, 2, 33 ; real, 3, 36 ; rational

and irrational, 34 ; positive and neg-
ative, 3; complex (imaginary), 432 ff.

Octant, 495.

One-valued function, 20.

Ordinate, 39.

Origin, 38, 163, 495.

Orthogonal circles, 331, 334.

Orthogonal projection in space, 494.

Parabola, 354 ff. ; definition of, 109,

268, 338; equations of, 109, 282,

354 ff.; properties of, 355, 362;
slope of, 268 ; tangents and
normals to, 359, 362 ; latus rectxim

of, 365.

Parabolic curves, 140.

Parabolic reflector, 364.

Parabolic spiral, 389.

Paraboloid, of revolution, 364

;

elliptic, 526; hyperbolic, 527.

Parallel lines, in plane, 85 ; in space,

500.

Parameter, definition of, 90, 392;
of system of lines, 90.

Parametric equations, 392 ff.

Partial fractions, 416 ff.

Pascal, B., 383,431 ;
—

's triangle, 431.

Peaucellier, inversor of, 336.

Pencil, of lines, 91; of circles, 332;
of planes, 510.
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Period of trigonometric functions,

157, 159, 162.

Permutations, 420 ff.

Perpendicular lines, in a plane, 86

;

in space, 500.

Plane, 504 ff. ; vectors in a, 435.

Point of division, in a plane, 295

;

in space, 501.

Polar and Pole, with respect to a

circle, 328 ; with respect to a

conic, 364, 373.

Polar axis, 163.

Polar coordinates, in a plane, 163 ff.,

377 ff. ; in space, 530.

Polar form of complex number,
438.

Polygon, area of, 301.

Polynomials, 402, 449 ff.

Power function, 140.

Powers, 53, 218, 444 ; table of, 534.

Prime number, 414.

Principal diagonal of a determinant,

475, 478.

Principal value of inverse trigono-

metric function, 193 ff.

Probability, 426 ff.

Product formulas in trigonometry,

207.

Progression, arithmetic and geomet-
ric, 216.

ProjectUe, 397 ff.

Projecting cylinder of a curve, 516.

Projection, 196 ff. ; central, 370;
orthogonal in space, 494, 497.

Pure imaginary number, 432.

Quadrant, 39 ; angles in a, 145.

Quadratic equation, 120 ff.

Quadratic function, 98 ff. ; applica-

tions of, 115 ff.; slope of, 274,

287 ; implicit, 265 ff., 514 ff.

Quantity, 2, 4 ; directed, 4.

Radian, 188.

Radical axis and center of two circles,

332, 334.

Radius vector, 163, 530.

Range, of variable, 23; of a pro-
jectile, 397.

"

Ratio, 33 ; simple, 294, 319.

Rational numbers, 33 ; as roots of an
equation, 467.

Reciprocal spiral, 386.

Rectangular coordinates, in a plane,

38 ff.; in space, 495.

Reference, axes of, 38.

Reflector, parabolic, 364.

Relative error, 236.

Remainder theorem, 411.

Revolution, surfaces of, 364, 519,

520.

Roots, of numbers, 444 ; table of,

534 ; of an equation, 120, 455 ff.

;

equal, of a quadratic, 124 ; rela-

tion of, to coefficients, 125, 473

;

complex, 462 ; rational, 467

;

irrational, 470 ; multiple, 460

;

Newton's method of approximation
to, 470 ff.

Rotation in a plane, 200.

Rounded numbers, 236 ff.

Scale, arithmetic and algebraic,

3, 5 ; rectilinear, uniform and non-
uniform, 5 ; logarithmic, 252.

Secant, definition of, 168 ;
graph of,

173 ; line representation of, 169.

Section of a surface, 517.

Segment, directed in a plane, 5, 48

;

in space, 497 ; —s to represent

statistical data, 6.

Shear, 132, 288.

Significant figures, 236.

Signs, law of, 49.

Simple ratio, 294, 319.

Simultaneous equations, 94 ff., 476,

480, 490.

Sine, definition of, 147 ; variation of,

157
; graph of, 158.

Single-valued function, 20.

Slide rule, 252 ff.

Slope, 73, 135, 268, 273, 285, 287,

290, 449.

Solution, of quadratic equations,

120 ff. ; of algebraic equations,

468 ff. ; of trigonometric equations,

174; of exponential equations,
" 234 f of triangles, 181 ff., 244 ff.

Sphere, 514.
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Spherical co5rdinates, 530.

Spirals, 386 ff.

Statistical data and graphs, 6, 26.

Straight line, 64 ff., 500 ff. ; slope

of, 73; equations of, 83, 307 ff.,

511; intercept form of, 89, 315;
normal form of, 315 ;

parallel and
perpendicular —s, 85, 500 ; system
of—s, 90 ; intersection of—s, 93

;

polar equation of, 380 ;
pencil of

—s, 91 ; direction cosines and angles

of, 498.

Subnormal, 364.

Successive derivatives, 458.

Sum of linear functions, 79.

Surd, 35.

Surface, 504 ff., 514 ff. ; of revolu-

tion, 364, 519 ff.

Symmetric equations of straight

line, 511.

Synthetic division, 412.

Table, of squares, etc., 118, 534 ; of

logarithms, 536 ff. ; of trigono-

metric functions, 538 ff.

Tabular representation of a function,

13.

Tangent (to a curve), definition of,

103 ; to a circle, 324 ff. ; to a

conic, 360 ff.; slope of, 73, 107,

135, 268, 273, 285, 287, 290, 449

;

slope forms of equation, 359

;

point forms of equation, 361.

Tangent (trigonometry) , definition

of, 147; variation of, 160; graph

of, 161 ; line representation of,

172 ; law of—s, 209.

Taylor's theorem, 458.

Term, 51.

Trace of a surface, 517.

Transverse axis of a hyperbola, 280,
349.

Triangle, area of, 186 ; angles of, 210

;

solution of, 181 ff., 244 ff.

Trigonometric equations, 174.

Trigonometric functions, definitions

of, 147, 168 ; graphs of, 158, 159,

161, 167, 173, 193, 194; variation
of, 157 ff. ; computation of, 148 ff.,

152 ff. ;
periods of, 157, 159, 162

;

inverse, 192 ff. ; formulas, 179, 180,

181, 201, 202, 204, 205, 207, 446;
application of De Moivre's
theorem, to expansion of, 446

;

logarithms of, 242, 538 ff. ; tables

of, 538 ff.

Trisection of an angle, 388.

Two-valued function, 20, 265 ff.

Variable, definition of, 12 ; independ-
ent and dependent, 12 ; range of,

23.

Vector, definition of, 5, 434 ; addition

of —s, 435 ; components of,

436.

Vectorial angle, 163.

Versed sine, 168.

Vertex of a conic, 109, 343, 349.

Zero of a function. 455.
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FROM THE PREFACE

The book contains a minimum of purely theoretical matter. Its entire

organization is intended to give a clear view of the meaning and the imme-

diate usefulness of Trigonometry. The proofs, however, are in a form that

will not require essential revision in the courses that follow. . . .

The number of exercises is very large, and the traditional monotony is"

broken by illustrations from a variety of topics. Here, as well as in the text,

the attempt is often made to lead the student to think for himself by giving

suggestions rather than completed solutions or demonstrations.

The text proper is short; what is there gained in space is used to make the

tables very complete and usable. Attention is called particularly to the com-

plete and handily arranged table of squares, square roots, cubes, etc.; by its

use the Pythagorean theorem and the Cosine Law become practicable for

actual computation. The use of the slide rule and of four-place tables is

encouraged for problems that do not demand extreme accuracy.

Only a few fundamental definitions and relations in Trigonometry need be

memorized; these are here emphasized. The great body of principles and

processes depends upon these fundamentals; these are presented in this book,

as they should be retained, rather by emphasizing and dwelling upon that

dependence. Otherwise, the subject can have no real educational value, nor

indeed any permanent practical value.
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This book presents as many and as varied applications of the Calculus

as it is possible to do without venturing into technical fields whose subject

matter is itself unknown and incomprehensible to the student, and without

abandoning an orderly presentation i)f fundamental principles.

The same general tendency has led to the treatment of topics with a view

toward bringing out their essential usefulness. Rigorous forms of demonstra-

tion are not insisted upon, especially where the precisely rigorous proofs

. would be beyond the present grasp of the student. Rather the stress is laid

upon the student's certain comprehension of that which is done, and his con-

viction that the results obtained are both reasonable and useful. At the

same time, an effort has been- made to avoid those grosser errors and actual

misstatements of fact which have often offended the teacher in texts otherwise

attractive and teachable.

Purely destructive criticism and abandonment of coherent arrangement

are just as dangerous as ultra-conservatism. This book attempts to preserve

the essential features of the Calculus, to give the student a thcrough training

in mathematical reasoning, to create in him a sure mathematical imagination,

and to meet fairly the reasonable demand for enlivening and enriching the

subject through applications at the expense of purely formal work that con*

tains no essential principle.
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STRONG POINTS

I. The authors and the editor are well qualified by training and experi-

ence to prepare a textbook on Geometry.
II. As treated in this book, geometry functions in the thought of the

pupil. It means something because its practical applications are shown.

III. The logical as well as the practical side of the subject is emphasized.

IV. The arrangement of material is pedagogical.

V. Basal theorems are printed in black-face type.

VI. The book conforms to the recommendations of the National Com-
mittee on the Teaching of Geometry.

VII. Typography and binding are excellent. The latter is the reenforced

tape binding that is characteristic of Macmillan textbooks.

" Geometry is likely to remain primarily a cultural, rather than an informa-

tion subject," say the authors in the preface. " But the intimate connection

of geometry with human activities is evident upon every hand, and constitutes

fully as much an integral part of the subject as does its older logical and
scholastic aspect." This connection with human activities, this application

of geometry to real human needs, is emphasized in a great variety of problems
and constructions, so that theory and application are inseparably connected
throughout the book.
These illustrations and the many others contained in the book will be seen

to cover a wider 7-ange than is usual, even in books that emphasize practical

applications to a questionable extent. This results in a better appreciation

of the significance of the subject on the part of the student, in that he gains a

truer conception of the wide scope of its application.

The logical as well as the practical side of the subject is emphasized.

^
Definitions, arrangement, and method of treatment are logical. The defi-

nitions are particularly simple, clear, and accurate. The traditional manner
of presentation in a logical system is preserved, with due regard for practical

applications. Proofs, both foimal and informal, are strictly logical.
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This work combines with analytic geometry a number of topics traditionally

treated in college algebra that depend upon or are closely associated with

geometric sensation. Through this combination it becomes possible to show

the student more directly the meaning and the usefulness of these subjects.

The idea of coordinates is so simple that it might (and perhaps should) be

explained at the very beginning of the study of algebra and geometry. Real

analytic geometry, however, begins only when the equation in two variables

is interpreted as defining a locus. This idea must be introduced very gradu-

ally, as it is difficult for the beginner to grasp. The familiar loci, straight

line and circle, are therefore treated at great length.

In the chapters on the conic sections only the most essential properties of

these curves are given in the text ; thus, poles and polars are discussed only

in connection with the circle.

The treatment of solid analytic geometry follows the more usual lines. But,

in view of the application to mechanics, the idea of the vector is given some

prominence; and the representation of a function of two variables by contour

lines as well as by a surface in space is explained and illustrated by practical

examples.

The exercises have been selected with great care in order not only to fur-

nish sufficient material for practice in algebraic work but also to stimulate

independent thinking and to point out the applications of the theory to con-

crete problems. The number of exercises is sufficient to allow the instructor

to make a choice.

To reduce the course presented in this book to about half its extent, the

parts of the text in small type, the chapters on soUd analytic geometry, and

the more difficult problems throughout may be omitted.
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As in most colleges the course in analytic geometry is preceded by a course

in advanced algebra, it appeared desirable to publish separately those parts

of the authors' "Analytic Geometry and Principles of Algebra" which deal

with analytic geometry, omitting the sections on algebra. This is done in the

present work.

In plane analytic geometry, the idea of function is introduced as early as

possible; and curves of the form>' =/(x), where /(;c) is a simple polynomial,

are discussed even before the conic sections are treated systematically. This

makes it possible to introduce the idea of the derivative ; but the sections

dealing with the derivative may be omitted.

In the chapters on the conic sections only the most essential properties of

these curves are given in the text ; thus, poles and polars are discussed only

in connection with the circle.

The treatment of solid analytic geometry follows more the usual lines.

But, in view of the application to mechanics, the idea of the vector is given

some prominence ; and the representation of a function of two variables by

contour lines as well as by a surface in space is explained and illustrated by

practical examples.

The exercises have been selected with great care in order not only to fur-

nish sufficient material for practice in algebraic work, but also to stimulate

independent thinking and to point out the applications of the theory to con-

crete problems. The number of exercises is sufficient to allow the instructor

to make a choice.
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SLIDE-RULE
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Directions

A reasonably accurate slide-rule

may be made by the student, for

temporary practice, as follows.

Take three strips of heavy stiff

cardboard 1".3 wide by &' long;

these are shown in cross-section in

(1), (2), (3) above. On (3)

paste or glue the adjoining cut

of the slide rule. Then cut strips

(2) and (3) accurately along the

lines marked. Paste or glue the

pieces together as shown in (4)

and (5). Then (5) forms the

slide of the slide-rule, and it will

fit in the groove in (4) if the work

has been carefully done. Trim

off the ends as shown in the large

cut.
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